Enhanced Efficient YOLOv3-tiny for Object Detection

Huanqia Cai, Lele Xu, Lili Guo
{"title":"Enhanced Efficient YOLOv3-tiny for Object Detection","authors":"Huanqia Cai, Lele Xu, Lili Guo","doi":"10.1145/3507548.3507551","DOIUrl":null,"url":null,"abstract":"Lightweight object detection models have great application prospects in resource-restricted scenarios such as mobile and embedded devices, and have been a hot topic in the computer vision community. However, most existing lightweight object detection methods show poor detection accuracy. In this study, we put forward a lightweight objection detection model named Enhanced-YOLOv3-tiny to improve the detection accuracy and reduce the model complexity at the same time. In Enhanced-YOLOv3-tiny, we propose a new backbone named GhostDarkNet based on DarkNet53 and Ghost Module for decreasing the model parameters, which helps to get more representative features compared with YOLOv3-tiny. Furthermore, we put forward a new Multiscale Head, which adds three more heads and includes Ghost Module in each head to fuse multi-scale features. Experiments on the Priority Research Application dataset from the real scenes in driving show that the proposed Enhanced-YOLOv3-tiny outperforms the state-of-the-art YOLOv3-tiny by 8.4% improvement in AP metric and decreases parameters from 8.8M to 3.9M, demonstrating the application potentials of our proposed method in resource-constrained scenarios.","PeriodicalId":414908,"journal":{"name":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507548.3507551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight object detection models have great application prospects in resource-restricted scenarios such as mobile and embedded devices, and have been a hot topic in the computer vision community. However, most existing lightweight object detection methods show poor detection accuracy. In this study, we put forward a lightweight objection detection model named Enhanced-YOLOv3-tiny to improve the detection accuracy and reduce the model complexity at the same time. In Enhanced-YOLOv3-tiny, we propose a new backbone named GhostDarkNet based on DarkNet53 and Ghost Module for decreasing the model parameters, which helps to get more representative features compared with YOLOv3-tiny. Furthermore, we put forward a new Multiscale Head, which adds three more heads and includes Ghost Module in each head to fuse multi-scale features. Experiments on the Priority Research Application dataset from the real scenes in driving show that the proposed Enhanced-YOLOv3-tiny outperforms the state-of-the-art YOLOv3-tiny by 8.4% improvement in AP metric and decreases parameters from 8.8M to 3.9M, demonstrating the application potentials of our proposed method in resource-constrained scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强高效YOLOv3-tiny的目标检测
轻量级目标检测模型在移动和嵌入式设备等资源受限场景中具有很大的应用前景,一直是计算机视觉界的研究热点。然而,现有的大多数轻量化目标检测方法检测精度较差。在本研究中,我们提出了一种轻量级的目标检测模型Enhanced-YOLOv3-tiny,在提高检测精度的同时降低模型复杂度。在Enhanced-YOLOv3-tiny中,我们提出了一种基于DarkNet53和Ghost Module的新主干GhostDarkNet,以减少模型参数,从而获得比YOLOv3-tiny更具代表性的特征。在此基础上,我们提出了一种新的多尺度磁头,该磁头增加了3个磁头,并在每个磁头中加入Ghost Module以融合多尺度特征。在Priority Research Application真实驾驶场景数据集上的实验表明,本文提出的Enhanced-YOLOv3-tiny在AP度量上比最先进的YOLOv3-tiny提高了8.4%,并将参数从8.8M降至3.9M,证明了本文提出的方法在资源受限场景下的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-atlas segmentation of knee cartilage via Semi-supervised Regional Label Propagation Comparative Study of Music Visualization based on CiteSpace at China and the World Enhanced Efficient YOLOv3-tiny for Object Detection Identification of Plant Stomata Based on YOLO v5 Deep Learning Model Predictive Screening of Accident Black Spots based on Deep Neural Models of Road Networks and Facilities: A Case Study based on a District in Hong Kong
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1