A firm and individual characteristic-based prediction model for E2.0 continuance adoption

Qiong Jia, F. Xin, Yue Guo, S. Barnes
{"title":"A firm and individual characteristic-based prediction model for E2.0 continuance adoption","authors":"Qiong Jia, F. Xin, Yue Guo, S. Barnes","doi":"10.1109/ICRIIS.2017.8002483","DOIUrl":null,"url":null,"abstract":"Enterprise-level 2.0 applications (E2.0) built on cloud computing Web 2.0 infrastructure offer promising new business models. However, recent studies show that most E2.0 firms experience a low free-to-paid conversion rate. Based on accumulated archival data and literature on predictive models and data mining, in this paper, we develop a logit model to predict the likelihood of E2.0 user continuance. The proposed model includes firm-specific and individual characteristics and estimates coefficients relating predictor variables to E2.0 continuance decisions. The sample includes information on 575 paid customers (i.e. firms) with 65,407 individual users and 2,286 previous customers with 99,807 individual users from 2011-2016. The resulting model can help business managers of E2.0 service providers to identify effectively reliable customers, optimize their sales efforts, and increase the free-to-paid conversion rate.","PeriodicalId":384130,"journal":{"name":"2017 International Conference on Research and Innovation in Information Systems (ICRIIS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Research and Innovation in Information Systems (ICRIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRIIS.2017.8002483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enterprise-level 2.0 applications (E2.0) built on cloud computing Web 2.0 infrastructure offer promising new business models. However, recent studies show that most E2.0 firms experience a low free-to-paid conversion rate. Based on accumulated archival data and literature on predictive models and data mining, in this paper, we develop a logit model to predict the likelihood of E2.0 user continuance. The proposed model includes firm-specific and individual characteristics and estimates coefficients relating predictor variables to E2.0 continuance decisions. The sample includes information on 575 paid customers (i.e. firms) with 65,407 individual users and 2,286 previous customers with 99,807 individual users from 2011-2016. The resulting model can help business managers of E2.0 service providers to identify effectively reliable customers, optimize their sales efforts, and increase the free-to-paid conversion rate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于企业和个体特征的E2.0持续采用预测模型
构建在云计算Web 2.0基础设施上的企业级2.0应用程序(E2.0)提供了有前景的新业务模型。然而,最近的研究表明,大多数E2.0公司的免费付费转化率很低。本文基于积累的档案数据、预测模型和数据挖掘方面的文献,建立了预测E2.0用户延续可能性的logit模型。提出的模型包括企业特定和个体特征,并估计与E2.0延续决策相关的预测变量的系数。样本包括2011-2016年间575个付费客户(即公司)的65,407个个人用户和2,286个老客户的99,807个个人用户的信息。由此得出的模型可以帮助E2.0服务提供商的业务经理有效地识别可靠的客户,优化他们的销售工作,提高免费付费的转化率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A firm and individual characteristic-based prediction model for E2.0 continuance adoption Understanding knowledge management behavior from a social exchange perspective Healthcare employees' perception on information privacy concerns Detection and prevention of possible unauthorized login attempts through stolen credentials from a phishing attack in an online banking system Resolving data duplication, inaccuracy and inconsistency issues using Master Data Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1