Improving the classification of propeller ships using LOFAR and triple loss variational auto encoder

Nhat Hoang Bach, V. Nguyen, Le Ha Vu
{"title":"Improving the classification of propeller ships using LOFAR and triple loss variational auto encoder","authors":"Nhat Hoang Bach, V. Nguyen, Le Ha Vu","doi":"10.1109/ICECET55527.2022.9873436","DOIUrl":null,"url":null,"abstract":"This paper presents an underwater signal processing model for the purpose of detecting and classifying propeller ship by the Low Frequency Analysis and Recording (LOFAR) algorithm combined with the Triple loss Variational Auto-Encoder network (TL- VAE). The results of the model have been tested on real data sets of Deepship, and showed better classification accuracy than Convolutional Neural Network (CNN) VGG-19. By replacing FFT with STFT before normalizing by TPSW (Two pass split window) and using the spatial domain probability distribution, the proposed model LOFAR-TL-VAE improved the classification accuracy by 10% even with low signal to noise ratio actual signals.","PeriodicalId":249012,"journal":{"name":"2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECET55527.2022.9873436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents an underwater signal processing model for the purpose of detecting and classifying propeller ship by the Low Frequency Analysis and Recording (LOFAR) algorithm combined with the Triple loss Variational Auto-Encoder network (TL- VAE). The results of the model have been tested on real data sets of Deepship, and showed better classification accuracy than Convolutional Neural Network (CNN) VGG-19. By replacing FFT with STFT before normalizing by TPSW (Two pass split window) and using the spatial domain probability distribution, the proposed model LOFAR-TL-VAE improved the classification accuracy by 10% even with low signal to noise ratio actual signals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用LOFAR和三损耗变分自编码器改进螺旋桨船舶入级
提出了一种基于低频分析与记录(LOFAR)算法和三损耗变分自编码器网络(TL- VAE)相结合的水下信号处理模型,用于螺旋桨船舶的检测与分类。该模型在Deepship的真实数据集上进行了测试,显示出比卷积神经网络(CNN) VGG-19更好的分类精度。通过在TPSW (Two pass split window)归一化前用STFT代替FFT,并利用空间域概率分布,所提出的LOFAR-TL-VAE模型即使在低信噪比的实际信号下,分类准确率也提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explainable AI for Breast Cancer Diagnosis: Application and User’s Understandability Perception Digital panels in the development of graphomotor skills in children from 3 to 5 years old. Ambato Ecuador Computationally-Efficient Secured IoT Networks: Devices Fingerprinting using Low Cost Machine Learning Techniques Designing And Implementing A High-Performance Computing Heterogeneous Cluster Regionally morphing objects for the genetic WASPAS-SVNS game scene generation algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1