{"title":"Downconverting Module Architectures for High Performance Multipixel Cameras","authors":"D. Palombini, M. Jankowski, E. Limiti","doi":"10.1155/2013/586158","DOIUrl":null,"url":null,"abstract":"Multipixel cameras represent an emerging topology for arrays receivers, improving speed and accuracy of both security scanning systems and radioastronomical sky surveys by means of a matrix of phased elements. Difficulties in the generation and proper distribution to each pixel of the local oscillator signal still limit their use to frequency ranges below a few GHz or at least seriously affect the complexity of the implementable cameras. This work presents a full comparison between two possible system architectures, alternatively based on LO frequency multiplication or subharmonic mixing strategies, aiming to overcome the aforesaid limitations: design and performance of two compact test vehicles in MMIC technology, both operating in the Q-band frequency range with ultrabroadband IF section, are reported.","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/586158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Multipixel cameras represent an emerging topology for arrays receivers, improving speed and accuracy of both security scanning systems and radioastronomical sky surveys by means of a matrix of phased elements. Difficulties in the generation and proper distribution to each pixel of the local oscillator signal still limit their use to frequency ranges below a few GHz or at least seriously affect the complexity of the implementable cameras. This work presents a full comparison between two possible system architectures, alternatively based on LO frequency multiplication or subharmonic mixing strategies, aiming to overcome the aforesaid limitations: design and performance of two compact test vehicles in MMIC technology, both operating in the Q-band frequency range with ultrabroadband IF section, are reported.