An Asynchronous Dataflow-Driven Execution Model For Distributed Accelerator Computing

Philip Salzmann, Fabian Knorr, Peter Thoman, P. Gschwandtner, Biagio Cosenza, T. Fahringer
{"title":"An Asynchronous Dataflow-Driven Execution Model For Distributed Accelerator Computing","authors":"Philip Salzmann, Fabian Knorr, Peter Thoman, P. Gschwandtner, Biagio Cosenza, T. Fahringer","doi":"10.1109/CCGrid57682.2023.00018","DOIUrl":null,"url":null,"abstract":"While domain-specific HPC software packages continue to thrive and are vital to many scientific communities, a general purpose high-productivity GPU cluster programming model that facilitates experimentation for non-experts remains elusive. We demonstrate how Celerity, a high-level C++ programming model for distributed accelerator computing based on the open SYCL standard, allows for the quick development of - and experimentation with - distributed applications. To achieve scalability on large machines, we replace Celerity's existing master/worker scheduling model with a fully distributed scheme that reduces the worst-case scheduling complexity from quadratic to linear while maintaining the existing programming interface. We then show how this declarative, data-flow based API paired with a point-to-point communication model with eager data pushing can effectively expose and leverage opportunities for latency hiding and computation/communication overlapping with minimal or no manual guidance. We demonstrate how Celerity exhibits very good scalability on multiple benchmarks from several scientific domains and up to 128 GPUs.","PeriodicalId":363806,"journal":{"name":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/ACM 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid57682.2023.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

While domain-specific HPC software packages continue to thrive and are vital to many scientific communities, a general purpose high-productivity GPU cluster programming model that facilitates experimentation for non-experts remains elusive. We demonstrate how Celerity, a high-level C++ programming model for distributed accelerator computing based on the open SYCL standard, allows for the quick development of - and experimentation with - distributed applications. To achieve scalability on large machines, we replace Celerity's existing master/worker scheduling model with a fully distributed scheme that reduces the worst-case scheduling complexity from quadratic to linear while maintaining the existing programming interface. We then show how this declarative, data-flow based API paired with a point-to-point communication model with eager data pushing can effectively expose and leverage opportunities for latency hiding and computation/communication overlapping with minimal or no manual guidance. We demonstrate how Celerity exhibits very good scalability on multiple benchmarks from several scientific domains and up to 128 GPUs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式加速器计算的异步数据流驱动执行模型
虽然特定领域的HPC软件包继续蓬勃发展,并且对许多科学社区至关重要,但一个通用的高生产力GPU集群编程模型仍然难以实现,可以为非专家提供实验便利。我们演示了基于开放SYCL标准的用于分布式加速器计算的高级c++编程模型Celerity如何支持分布式应用程序的快速开发和实验。为了在大型机器上实现可扩展性,我们用一个完全分布式的方案取代了Celerity现有的主/工人调度模型,在保持现有编程接口的同时,将最坏情况调度复杂度从二次型降低到线性型。然后,我们将展示这种声明性的、基于数据流的API如何与具有即时数据推送的点对点通信模型配对,从而有效地暴露和利用延迟隐藏和计算/通信重叠的机会,而只需极少或无需手动指导。我们将演示如何在多个科学领域和多达128个gpu的多个基准测试中展示非常好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HeROfake: Heterogeneous Resources Orchestration in a Serverless Cloud – An Application to Deepfake Detection hsSpMV: A Heterogeneous and SPM-aggregated SpMV for SW26010-Pro many-core processor CacheIn: A Secure Distributed Multi-layer Mobility-Assisted Edge Intelligence based Caching for Internet of Vehicles AggFirstJoin: Optimizing Geo-Distributed Joins using Aggregation-Based Transformations A Cloud-Fog Architecture for Video Analytics on Large Scale Camera Networks Using Semantic Scene Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1