Intelligent Gain Scheduling (igs) Using Neural Networks For Robotic Manipulators

Q. Wang, D. Broome, A. Greig
{"title":"Intelligent Gain Scheduling (igs) Using Neural Networks For Robotic Manipulators","authors":"Q. Wang, D. Broome, A. Greig","doi":"10.1109/NNAT.1993.586060","DOIUrl":null,"url":null,"abstract":"Existing industrial robotic manipulators have proven to be limited in many applications, especially in their payloads and manipulation speeds. This paper presents an Intelligent Gain Scheduling control scheme using neural networks. It advances the idea of mapping the non-linear relationship between robot working conditions (e.g. payload, speed, etc.) and its controller’s gains. The aim of this research is to try to propose an applied robot controller, which is not too expensive, is acceptable to industry and can largely improve the pe~omance of existing robot manipulators. Simulation has shown promising results.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Existing industrial robotic manipulators have proven to be limited in many applications, especially in their payloads and manipulation speeds. This paper presents an Intelligent Gain Scheduling control scheme using neural networks. It advances the idea of mapping the non-linear relationship between robot working conditions (e.g. payload, speed, etc.) and its controller’s gains. The aim of this research is to try to propose an applied robot controller, which is not too expensive, is acceptable to industry and can largely improve the pe~omance of existing robot manipulators. Simulation has shown promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的机器人智能增益调度
现有的工业机器人机械手在许多应用中被证明是有限的,特别是在它们的有效载荷和操作速度方面。提出了一种基于神经网络的智能增益调度控制方案。它提出了映射机器人工作条件(例如有效载荷,速度等)与其控制器增益之间的非线性关系的思想。本研究的目的是尝试提出一种实用的机器人控制器,它不太昂贵,工业上可以接受,并且可以大大提高现有机器人操纵器的性能。仿真结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Kohonen Feature Maps To Monitor The Condition Of Synchronous Generators Improved Image Compression Using Backpropagation Networks A Neural Network Quality Classifier For Tig Welding Without Filler Intelligent Gain Scheduling (igs) Using Neural Networks For Robotic Manipulators Prototype Of A Neuro-fuzzy Controlled Model Lorry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1