{"title":"A passivity approach to control of Markovian jump systems with mixed time-varying delays","authors":"H. Karimi, B. Makki, Bahador Makki","doi":"10.1109/ICAT.2013.6684057","DOIUrl":null,"url":null,"abstract":"This paper investigated the problem of control design for a class of stochastic systems with Markovian jump parameters and time-varying delays. For the model under consideration, a passivity-based approach is introduced for designing mode-dependent output feedback controllers with mixed discrete and distributed delays. A Lypunov-Krasovskii function (LKF) is defined to establish new required sufficient conditions for ensuring exponentially mean-square stability and the passivity criteria, simultaneously. Moreover, controller gains are calculated based on a convex optimization method by solving a Linear Matrix Inequality (LMI). Finally, simulation results are provided to illustrate the effectiveness of our approach.","PeriodicalId":348701,"journal":{"name":"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 XXIV International Conference on Information, Communication and Automation Technologies (ICAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAT.2013.6684057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigated the problem of control design for a class of stochastic systems with Markovian jump parameters and time-varying delays. For the model under consideration, a passivity-based approach is introduced for designing mode-dependent output feedback controllers with mixed discrete and distributed delays. A Lypunov-Krasovskii function (LKF) is defined to establish new required sufficient conditions for ensuring exponentially mean-square stability and the passivity criteria, simultaneously. Moreover, controller gains are calculated based on a convex optimization method by solving a Linear Matrix Inequality (LMI). Finally, simulation results are provided to illustrate the effectiveness of our approach.