Advantages in Crash Severity Prediction Using Vehicle to Vehicle Communication

Dennis Böhmländer, Sinan Hasirlioglu, V. Yano, Christian Lauerer, T. Brandmeier, A. Zimmer
{"title":"Advantages in Crash Severity Prediction Using Vehicle to Vehicle Communication","authors":"Dennis Böhmländer, Sinan Hasirlioglu, V. Yano, Christian Lauerer, T. Brandmeier, A. Zimmer","doi":"10.1109/DSN-W.2015.23","DOIUrl":null,"url":null,"abstract":"The paper discusses a new approach in contactless crash detection combining measurements of vehicle dynamics, exteroceptive sensors and vehicle-to-vehicle (V2V) communication data. The proposed architecture aims to activate vehicle safety functions prior an imminent collision to minimize the risk of suffering a major injury. An activation needs a precise prediction of time to collision (TTC), the crash severity (Cs) and other relevant crash parameters. This paper studies the contribution of V2V communication data to predict potential collisions and to realize a reliable activation. An algorithm is presented, that merges fused measurements of a video camera, a laser range finder (LRF) and ego vehicle motion sensors with V2V communication data to predict collisions. The benefit using V2V communication is demonstrated by evaluating collision prediction errors. This analysis is carried out based on experimental data produced by two scale model vehicles.","PeriodicalId":202329,"journal":{"name":"2015 IEEE International Conference on Dependable Systems and Networks Workshops","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Dependable Systems and Networks Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN-W.2015.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper discusses a new approach in contactless crash detection combining measurements of vehicle dynamics, exteroceptive sensors and vehicle-to-vehicle (V2V) communication data. The proposed architecture aims to activate vehicle safety functions prior an imminent collision to minimize the risk of suffering a major injury. An activation needs a precise prediction of time to collision (TTC), the crash severity (Cs) and other relevant crash parameters. This paper studies the contribution of V2V communication data to predict potential collisions and to realize a reliable activation. An algorithm is presented, that merges fused measurements of a video camera, a laser range finder (LRF) and ego vehicle motion sensors with V2V communication data to predict collisions. The benefit using V2V communication is demonstrated by evaluating collision prediction errors. This analysis is carried out based on experimental data produced by two scale model vehicles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用车对车通信进行碰撞严重程度预测的优势
本文讨论了一种结合车辆动力学测量、外部感知传感器和车对车(V2V)通信数据的非接触式碰撞检测新方法。拟议的架构旨在在即将发生碰撞之前激活车辆安全功能,以尽量减少遭受重大伤害的风险。激活需要精确预测碰撞时间(TTC)、碰撞严重程度(Cs)和其他相关碰撞参数。本文研究了V2V通信数据对预测潜在碰撞和实现可靠激活的贡献。提出了一种将视频摄像机、激光测距仪(LRF)和自我车辆运动传感器的融合测量数据与V2V通信数据相结合的碰撞预测算法。通过评估碰撞预测误差来证明使用V2V通信的好处。该分析是基于两辆比例模型车的实验数据进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video on Demand Hosted in Private Cloud: Availability Modeling and Sensitivity Analysis Semi-automatic Generation of Extended Finite State Machines from Natural Language Standard Documents Studying the Propagation of Failures in SOAs Using Data Integrity as an Improvement Characteristic to Assess the Safety of ADS-B-based Systems Cost Prediction for V&V and Certification Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1