Ultra-Wideband Microstrip Bandpass Filter and Its Equivalent Circuit

Shita Fitria Nurjihan, Yenniwarti Rafsyam
{"title":"Ultra-Wideband Microstrip Bandpass Filter and Its Equivalent Circuit","authors":"Shita Fitria Nurjihan, Yenniwarti Rafsyam","doi":"10.22146/ijitee.65695","DOIUrl":null,"url":null,"abstract":"Microstrip filters can be designed with various methods to obtain good performances, such as defected ground structure, open-ended slot, planar edge coupled, and split ring resonator with groundplane windowing. In this paper, the design of an ultra-wideband microstrip bandpass filter used the defected ground structure (DGS) method by adding a circular slot to the groundplane. The addition of the circular slot was carried out to improve the value of S parameter (return loss and insertion loss) from the initial filter design without a circular slot. In the simulation process, optimization was carried out by changing the value of filter component parameters such as patch length and thickness and circular slot width. The simulation results showed that the microstrip bandpass filter could pass frequencies in the range of 1.4 GHz to 5.7 GHz with the bandwidth response of 4.3 GHz. In addition, filter analysis could also be done with an equivalent circuit represented by lumped element components in the form of capacitors and inductors connected in series or parallel. The simulation results of the equivalent circuit had a wider bandwidth, which was able to pass frequencies in the range of 1.2 GHz to 6.1 GHz with a bandwidth response of 4.9 GHz.","PeriodicalId":292390,"journal":{"name":"IJITEE (International Journal of Information Technology and Electrical Engineering)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJITEE (International Journal of Information Technology and Electrical Engineering)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ijitee.65695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microstrip filters can be designed with various methods to obtain good performances, such as defected ground structure, open-ended slot, planar edge coupled, and split ring resonator with groundplane windowing. In this paper, the design of an ultra-wideband microstrip bandpass filter used the defected ground structure (DGS) method by adding a circular slot to the groundplane. The addition of the circular slot was carried out to improve the value of S parameter (return loss and insertion loss) from the initial filter design without a circular slot. In the simulation process, optimization was carried out by changing the value of filter component parameters such as patch length and thickness and circular slot width. The simulation results showed that the microstrip bandpass filter could pass frequencies in the range of 1.4 GHz to 5.7 GHz with the bandwidth response of 4.3 GHz. In addition, filter analysis could also be done with an equivalent circuit represented by lumped element components in the form of capacitors and inductors connected in series or parallel. The simulation results of the equivalent circuit had a wider bandwidth, which was able to pass frequencies in the range of 1.2 GHz to 6.1 GHz with a bandwidth response of 4.9 GHz.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超宽带微带带通滤波器及其等效电路
为了获得良好的性能,微带滤波器可以采用多种设计方法,如缺陷接地结构、开放式槽、平面边缘耦合、带接地面窗的分环谐振器等。本文采用缺陷接地结构(DGS)方法,在接地面上增加一个圆槽,设计了一种超宽带微带带通滤波器。增加圆槽是为了改善初始滤波器设计中没有圆槽时S参数(回波损耗和插入损耗)的值。在仿真过程中,通过改变滤波器元件的贴片长度、厚度、圆槽宽度等参数值进行优化。仿真结果表明,该微带带通滤波器可以通过1.4 GHz ~ 5.7 GHz的频率,带宽响应为4.3 GHz。此外,滤波分析也可以用电容和电感串联或并联形式的集总元件元件表示的等效电路来完成。仿真结果表明,等效电路具有更宽的带宽,能够通过1.2 GHz ~ 6.1 GHz的频率,带宽响应为4.9 GHz。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eye Blink Classification for Assisting Disability to Communicate Using Bagging and Boosting Product Recommendation Based on Eye Tracking Data Using Fixation Duration Optimal Capacity and Location Wind Turbine to Minimize Power Losses Using NSGA-II Factors Affecting Collaboration Portal Effectiveness of the Audit Board of Indonesia Piezoelectric Energy Harvester for IoT Sensor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1