Application of an improved empirical mode decomposition algorithm in the feature extraction of blood pressure signal in salt-sensitive rats

Haofan Wu, Jinbo Yang, Yili Zhu, Xinbao Wang, Zhaoqian Luo, Yating Xiao
{"title":"Application of an improved empirical mode decomposition algorithm in the feature extraction of blood pressure signal in salt-sensitive rats","authors":"Haofan Wu, Jinbo Yang, Yili Zhu, Xinbao Wang, Zhaoqian Luo, Yating Xiao","doi":"10.1145/3448748.3448758","DOIUrl":null,"url":null,"abstract":"Analyzing the blood pressure signal of salt-sensitive rats can provide important information for the study of blood pressure changes caused by human salt sensitivity. The blood pressure signal usually contains noise. In order to extract a more pure blood pressure signal, this paper uses an improved EMD algorithm based on noise statistical features. First, emd is applied to the original signal, and the high frequency noise except the heart rate will be randomly sorted. Then this paper add this signal to the original noise and calculate the average value, use the result as the new noise signal to sum the original real signal, and then do EMD. This algorithm effectively reduces the power of noise. The simulation results show that this method can effectively extract the blood pressure signal of salt-sensitive (SS) rats. Under the high and low salt diet, the changes in blood pressure of the rats are in line with medical laws.","PeriodicalId":115821,"journal":{"name":"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Bioinformatics and Intelligent Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448748.3448758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Analyzing the blood pressure signal of salt-sensitive rats can provide important information for the study of blood pressure changes caused by human salt sensitivity. The blood pressure signal usually contains noise. In order to extract a more pure blood pressure signal, this paper uses an improved EMD algorithm based on noise statistical features. First, emd is applied to the original signal, and the high frequency noise except the heart rate will be randomly sorted. Then this paper add this signal to the original noise and calculate the average value, use the result as the new noise signal to sum the original real signal, and then do EMD. This algorithm effectively reduces the power of noise. The simulation results show that this method can effectively extract the blood pressure signal of salt-sensitive (SS) rats. Under the high and low salt diet, the changes in blood pressure of the rats are in line with medical laws.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进经验模态分解算法在盐敏感大鼠血压信号特征提取中的应用
分析盐敏感大鼠的血压信号,可以为研究人体盐敏感引起的血压变化提供重要信息。血压信号通常含有噪声。为了提取更纯净的血压信号,本文采用了一种改进的基于噪声统计特征的EMD算法。首先对原始信号进行emd处理,对除心率外的高频噪声进行随机排序。然后将该信号与原始噪声相加并计算平均值,将其作为新的噪声信号与原始真实信号求和,然后进行EMD。该算法有效地降低了噪声的影响。仿真结果表明,该方法可以有效地提取盐敏感大鼠的血压信号。在高盐和低盐饮食下,大鼠血压的变化符合医学规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparison of Picard Versions for Analyzing functional Magnetic Resonance Imaging Data Study on Dispatching Model of Block Economy Based-Data Mining A Modified HOG Algorithm based on the Prewitt Operator RNA-seq Reveals the Increased Risk of Heart and Cardiovascular Disease by SARS-CoV-2 Infection Curative Effect of Tongyu Decoction on Neurological Deficit and Rehabilitation Effect of Patients with Cerebral Hemorrhage in Recovery Period
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1