A new algorithm for training sparse autoencoders

A. Shamsabadi, M. Babaie-zadeh, Seyyede Zohreh Seyyedsalehi, H. Rabiee, C. Jutten
{"title":"A new algorithm for training sparse autoencoders","authors":"A. Shamsabadi, M. Babaie-zadeh, Seyyede Zohreh Seyyedsalehi, H. Rabiee, C. Jutten","doi":"10.23919/EUSIPCO.2017.8081588","DOIUrl":null,"url":null,"abstract":"Data representation plays an important role in performance of machine learning algorithms. Since data usually lacks the desired quality, many efforts have been made to provide a more desirable representation of data. Among many different approaches, sparse data representation has gained popularity in recent years. In this paper, we propose a new sparse autoencoder by imposing the power two of smoothed L0 norm of data representation on the hidden layer of regular autoencoder. The square of smoothed L0 norm increases the tendency that each data representation is \"individually\" sparse. Moreover, by using the proposed sparse autoencoder, once the model parameters are learned, the sparse representation of any new data is obtained simply by a matrix-vector multiplication without performing any optimization. When applied to the MNIST, CIFAR-10, and OPTDIGITS datasets, the results show that the proposed model guarantees a sparse representation for each input data which leads to better classification results.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Data representation plays an important role in performance of machine learning algorithms. Since data usually lacks the desired quality, many efforts have been made to provide a more desirable representation of data. Among many different approaches, sparse data representation has gained popularity in recent years. In this paper, we propose a new sparse autoencoder by imposing the power two of smoothed L0 norm of data representation on the hidden layer of regular autoencoder. The square of smoothed L0 norm increases the tendency that each data representation is "individually" sparse. Moreover, by using the proposed sparse autoencoder, once the model parameters are learned, the sparse representation of any new data is obtained simply by a matrix-vector multiplication without performing any optimization. When applied to the MNIST, CIFAR-10, and OPTDIGITS datasets, the results show that the proposed model guarantees a sparse representation for each input data which leads to better classification results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏自编码器训练新算法
数据表示在机器学习算法的性能中起着重要的作用。由于数据通常缺乏所需的质量,因此已经做出了许多努力来提供更理想的数据表示。在许多不同的方法中,稀疏数据表示近年来得到了广泛的应用。本文提出了一种新的稀疏自编码器,将数据表示的平滑L0范数的幂2加到正则自编码器的隐层上。平滑L0范数的平方增加了每个数据表示“单独”稀疏的趋势。此外,使用本文提出的稀疏自编码器,一旦模型参数被学习,任何新数据的稀疏表示都是通过简单的矩阵向量乘法得到的,而无需进行任何优化。将该模型应用于MNIST、CIFAR-10和OPTDIGITS数据集,结果表明该模型保证了每个输入数据的稀疏表示,从而获得了更好的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1