Mingyang Chen, Wenwu Wang, M. Barnard, J. Chambers
{"title":"Wideband DoA estimation based on joint optimisation of array and spatial sparsity","authors":"Mingyang Chen, Wenwu Wang, M. Barnard, J. Chambers","doi":"10.23919/EUSIPCO.2017.8081581","DOIUrl":null,"url":null,"abstract":"We study the problem of wideband direction of arrival (DoA) estimation by joint optimisation of array and spatial sparsity. Two-step iterative process is proposed. In the first step, the wideband signal is reshaped and used as the input to derive the weight coefficients using a sparse array optimisation method. The weights are then used to scale the observed signal model for which a compressive sensing based spatial sparsity optimisation method is used for DoA estimation. Simulations are provided to demonstrate the performance of the proposed method for both stationary and moving sources.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
We study the problem of wideband direction of arrival (DoA) estimation by joint optimisation of array and spatial sparsity. Two-step iterative process is proposed. In the first step, the wideband signal is reshaped and used as the input to derive the weight coefficients using a sparse array optimisation method. The weights are then used to scale the observed signal model for which a compressive sensing based spatial sparsity optimisation method is used for DoA estimation. Simulations are provided to demonstrate the performance of the proposed method for both stationary and moving sources.