Wideband DoA estimation based on joint optimisation of array and spatial sparsity

Mingyang Chen, Wenwu Wang, M. Barnard, J. Chambers
{"title":"Wideband DoA estimation based on joint optimisation of array and spatial sparsity","authors":"Mingyang Chen, Wenwu Wang, M. Barnard, J. Chambers","doi":"10.23919/EUSIPCO.2017.8081581","DOIUrl":null,"url":null,"abstract":"We study the problem of wideband direction of arrival (DoA) estimation by joint optimisation of array and spatial sparsity. Two-step iterative process is proposed. In the first step, the wideband signal is reshaped and used as the input to derive the weight coefficients using a sparse array optimisation method. The weights are then used to scale the observed signal model for which a compressive sensing based spatial sparsity optimisation method is used for DoA estimation. Simulations are provided to demonstrate the performance of the proposed method for both stationary and moving sources.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study the problem of wideband direction of arrival (DoA) estimation by joint optimisation of array and spatial sparsity. Two-step iterative process is proposed. In the first step, the wideband signal is reshaped and used as the input to derive the weight coefficients using a sparse array optimisation method. The weights are then used to scale the observed signal model for which a compressive sensing based spatial sparsity optimisation method is used for DoA estimation. Simulations are provided to demonstrate the performance of the proposed method for both stationary and moving sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于阵列和空间稀疏度联合优化的宽带DoA估计
本文研究了基于阵列和空间稀疏度联合优化的宽带到达方向估计问题。提出了两步迭代法。首先,对宽带信号进行重构,并将其作为输入,利用稀疏阵列优化方法推导权重系数。然后使用权重来缩放观测信号模型,其中基于压缩感知的空间稀疏性优化方法用于DoA估计。通过仿真验证了该方法在静止和运动源下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring using a perturbation-basec regularization approach Distributed computational load balancing for real-time applications Nonconvulsive epileptic seizures detection using multiway data analysis Performance improvement for wideband beamforming with white noise reduction based on sparse arrays Wideband DoA estimation based on joint optimisation of array and spatial sparsity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1