R. Puche-Panadero, J. Pons-Llinares, J. Roger-Folch, M. Pineda-Sánchez
{"title":"Diagnosis of eccentricity based on the Hilbert transform of the startup transient current","authors":"R. Puche-Panadero, J. Pons-Llinares, J. Roger-Folch, M. Pineda-Sánchez","doi":"10.1109/DEMPED.2009.5292787","DOIUrl":null,"url":null,"abstract":"The Hilbert Transform (HT) can improve the resolution of motor current signature analysis (MCSA), especially at very low slip, because it converts the supply frequency into a continuous component, which can be easily removed to better detect fault harmonics. This paper proposes its application also during speed transients, with two key advantages: first, it allows an easy filtering of the transient current component corresponding to the supply frequency, and, second, the HT allows for the generation of the Hilbert Spectrum, as a replacement of the Fourier Spectrum in the case of non-stationary signals, like those that appear in a transient regime. The performance of the proposed method is compared with other methods as the Discrete Wavelet Transform (DWT), and is validated through simulation with a mathematical model and experimental analysis of a 1.1 kW three-phase squirrel-cage commercial induction motor with eccentricity.","PeriodicalId":405777,"journal":{"name":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2009.5292787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The Hilbert Transform (HT) can improve the resolution of motor current signature analysis (MCSA), especially at very low slip, because it converts the supply frequency into a continuous component, which can be easily removed to better detect fault harmonics. This paper proposes its application also during speed transients, with two key advantages: first, it allows an easy filtering of the transient current component corresponding to the supply frequency, and, second, the HT allows for the generation of the Hilbert Spectrum, as a replacement of the Fourier Spectrum in the case of non-stationary signals, like those that appear in a transient regime. The performance of the proposed method is compared with other methods as the Discrete Wavelet Transform (DWT), and is validated through simulation with a mathematical model and experimental analysis of a 1.1 kW three-phase squirrel-cage commercial induction motor with eccentricity.