Nonlinear system identification using constellation based multiple model adaptive estimators

J. C. Martins, J. Caeiro, L. Sousa
{"title":"Nonlinear system identification using constellation based multiple model adaptive estimators","authors":"J. C. Martins, J. Caeiro, L. Sousa","doi":"10.5281/ZENODO.44203","DOIUrl":null,"url":null,"abstract":"This paper describes the application of the constellation based multiple model adaptive estimation (CBMMAE) algorithm to the identification and parameter estimation of nonlinear systems. The method was successfully applied to the identification of linear systems both stationary and nonstationary, being able to fine tune its parameters. The method starts by establishing a minimum set of models that are geometrically arranged in the space spanned by the unknown parameters, and adopts a strategy to adaptively update the constellation models in the parameter space in order to find the model resembling the system under identification. By downscaling the models parameters the constellation is shrunk, reducing the uncertainty of the parameters estimation. Simulations are presented to exhibit the application of the framework and the performance of the algorithm to the identification and parameters estimation of nonlinear systems.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the application of the constellation based multiple model adaptive estimation (CBMMAE) algorithm to the identification and parameter estimation of nonlinear systems. The method was successfully applied to the identification of linear systems both stationary and nonstationary, being able to fine tune its parameters. The method starts by establishing a minimum set of models that are geometrically arranged in the space spanned by the unknown parameters, and adopts a strategy to adaptively update the constellation models in the parameter space in order to find the model resembling the system under identification. By downscaling the models parameters the constellation is shrunk, reducing the uncertainty of the parameters estimation. Simulations are presented to exhibit the application of the framework and the performance of the algorithm to the identification and parameters estimation of nonlinear systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于星座的多模型自适应估计的非线性系统辨识
本文介绍了基于星座的多模型自适应估计(CBMMAE)算法在非线性系统辨识和参数估计中的应用。该方法成功地应用于平稳和非平稳线性系统的辨识,并能对其参数进行微调。该方法首先在未知参数所跨越的空间中建立几何排列的最小模型集,并采用自适应更新参数空间中的星座模型的策略,以找到与待识别系统相似的模型。通过对模型参数的降尺度,缩小了星座,降低了参数估计的不确定性。通过仿真展示了该框架在非线性系统辨识和参数估计中的应用以及算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved chirp group delay based algorithm for estimating the vocal tract response Bone microstructure reconstructions from few projections with stochastic nonlinear diffusion Adaptive waveform selection and target tracking by wideband multistatic radar/sonar systems Exploiting time and frequency information for Delay/Doppler altimetry Merging extremum seeking and self-optimizing narrowband interference canceller - overdetermined case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1