Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system

J. Hurtado-Rincón, S. Rojas-Jaramillo, Y. Ricardo-Cespedes, A. Álvarez-Meza, G. Castellanos-Domínguez
{"title":"Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system","authors":"J. Hurtado-Rincón, S. Rojas-Jaramillo, Y. Ricardo-Cespedes, A. Álvarez-Meza, G. Castellanos-Domínguez","doi":"10.1109/STSIVA.2014.7010165","DOIUrl":null,"url":null,"abstract":"Brain Computer Interfaces (BCI) have been emerged as an alternative to support automatic systems able to interpret brain functions, commonly, by analyzing electroencephalography (EEG) recordings. In this work, a time-series discrimination methodology, called Motor Imagery Discrimination by Relevance Analysis (MIDRA), is presented to support the development of BCI from EEG data. Particularly, a Motor Imagery (MI) paradigm is studied, i.e., imagination of left-right hand movements. In this sense, a feature relevance analysis strategy is presented to select representing characteristics using a variability criterion. Besides, short-time parameters are estimated from EEG data by considering both time and time-frequency representations to deal with non-stationary dynamics. MIDRA is assessed on two different BCI databases, a well-known MI data and an Emotiv-based dataset. Attained results showed that MIDRA enhances the BCI system performance in comparison with benchmark methods by suitable ranking the input feature set. Moreover, applying MIDRA in a BCI based on the Emotiv device is a straightforward alternative for dealing with MI paradigms.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Brain Computer Interfaces (BCI) have been emerged as an alternative to support automatic systems able to interpret brain functions, commonly, by analyzing electroencephalography (EEG) recordings. In this work, a time-series discrimination methodology, called Motor Imagery Discrimination by Relevance Analysis (MIDRA), is presented to support the development of BCI from EEG data. Particularly, a Motor Imagery (MI) paradigm is studied, i.e., imagination of left-right hand movements. In this sense, a feature relevance analysis strategy is presented to select representing characteristics using a variability criterion. Besides, short-time parameters are estimated from EEG data by considering both time and time-frequency representations to deal with non-stationary dynamics. MIDRA is assessed on two different BCI databases, a well-known MI data and an Emotiv-based dataset. Attained results showed that MIDRA enhances the BCI system performance in comparison with benchmark methods by suitable ranking the input feature set. Moreover, applying MIDRA in a BCI based on the Emotiv device is a straightforward alternative for dealing with MI paradigms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征关联分析的运动意象分类:一个基于emotivo的脑机接口系统
脑机接口(BCI)作为一种支持自动系统的替代方案,通常通过分析脑电图(EEG)记录来解释大脑功能。在这项工作中,提出了一种时间序列识别方法,称为运动意象识别相关分析(MIDRA),以支持从EEG数据中开发脑机接口。特别地,运动意象(MI)范式被研究,即,左手右手运动的想象。在这个意义上,提出了一种特征相关性分析策略,利用可变性准则选择具有代表性的特征。此外,结合时频表征和时频表征对脑电数据进行短时参数估计,以处理非平稳动态。MIDRA在两个不同的BCI数据库上进行评估,一个是众所周知的MI数据,另一个是基于emotiv的数据集。结果表明,与基准方法相比,MIDRA通过对输入特征集进行适当的排序,提高了BCI系统的性能。此外,在基于Emotiv设备的BCI中应用MIDRA是处理MI范例的直接替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system Causality analysis of P300 recordings focused on the localization of active brain areas Novel spectral characteristics of the electrical current waveform to quantifying power quality on LED lamps Comparison of preprocessing methods for diffusion tensor estimation in brain imaging Pattern recognition of hypernasality in voice of patients with Cleft and Lip Palate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1