Early feature stream integration versus decision level combination in a multiple classifier system for text line recognition

Roman Bertolami, H. Bunke
{"title":"Early feature stream integration versus decision level combination in a multiple classifier system for text line recognition","authors":"Roman Bertolami, H. Bunke","doi":"10.1109/ICPR.2006.466","DOIUrl":null,"url":null,"abstract":"This paper compares two different methods to combine feature streams to improve the performance of offline handwritten text line recognition systems. In both methods a pixel-based and a geometric feature stream are combined. The first method integrates the feature streams at an early stage whereas in the second method a combination step at the decision level is applied. In the experiments, the early integration approach outperforms the decision level combination as well as recognisers built from the individual feature streams","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper compares two different methods to combine feature streams to improve the performance of offline handwritten text line recognition systems. In both methods a pixel-based and a geometric feature stream are combined. The first method integrates the feature streams at an early stage whereas in the second method a combination step at the decision level is applied. In the experiments, the early integration approach outperforms the decision level combination as well as recognisers built from the individual feature streams
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本行识别中多分类器系统的早期特征流集成与决策级组合
本文比较了两种不同的结合特征流的方法来提高离线手写文本行识别系统的性能。这两种方法都结合了基于像素的特征流和几何特征流。第一种方法在早期阶段集成特征流,而第二种方法在决策级应用组合步骤。在实验中,早期集成方法优于决策级组合以及从单个特征流构建的识别器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1