Using Big Data for Data Leak Prevention

Ivan Gaidarski, P. Kutinchev
{"title":"Using Big Data for Data Leak Prevention","authors":"Ivan Gaidarski, P. Kutinchev","doi":"10.1109/BdKCSE48644.2019.9010596","DOIUrl":null,"url":null,"abstract":"The paper present our approach for protecting sensitive data, using the methods of Big Data. To effectively protect the valuable information within the organization, the following steps are needed: Employing a holistic approach for data classification, identifying sensitive data of the organization, Identifying critical exit points - communication channels, applications and connected devices and protecting the sensitive data by controlling the critical exit points. Our approach is based on creating of component-based architecture framework for ISS, conceptual models for data protection and implementation with COTS IT security products as Data Leak Prevention (DLP) solutions. Our approach is data centric, which is holistic by its nature to protect the meaningful data of the organization.","PeriodicalId":206080,"journal":{"name":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BdKCSE48644.2019.9010596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper present our approach for protecting sensitive data, using the methods of Big Data. To effectively protect the valuable information within the organization, the following steps are needed: Employing a holistic approach for data classification, identifying sensitive data of the organization, Identifying critical exit points - communication channels, applications and connected devices and protecting the sensitive data by controlling the critical exit points. Our approach is based on creating of component-based architecture framework for ISS, conceptual models for data protection and implementation with COTS IT security products as Data Leak Prevention (DLP) solutions. Our approach is data centric, which is holistic by its nature to protect the meaningful data of the organization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用大数据预防数据泄漏
本文介绍了我们利用大数据方法保护敏感数据的方法。为了有效保护组织内的有价值信息,需要采取以下步骤:采用整体方法进行数据分类,识别组织的敏感数据,识别关键出口点-通信渠道,应用程序和连接的设备,并通过控制关键出口点来保护敏感数据。我们的方法是基于为ISS创建基于组件的体系结构框架,数据保护的概念模型和使用COTS IT安全产品作为数据泄漏预防(DLP)解决方案的实现。我们的方法是以数据为中心的,其本质是保护组织的有意义的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forecasting the Spot Price of P1A Shipping Route Building Lepida ScpA BigData Infrastructure Knowledge Based Modelling of Complex Interconnected Systems Using Big Data for Data Leak Prevention Analysis of the Functionalities of a Shared ICS Security Operations Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1