Emphasis recreation for TTS using intonation atoms

Pierre-Edouard Honnet, Philip N. Garner
{"title":"Emphasis recreation for TTS using intonation atoms","authors":"Pierre-Edouard Honnet, Philip N. Garner","doi":"10.21437/SSW.2016-3","DOIUrl":null,"url":null,"abstract":"We are interested in emphasis for text to speech synthesis. In speech to speech translation, emphasising the correct words is important to convey the underlying meaning of a message. In this paper, we propose to use a generalised command-response (CR) model of intonation to generate emphasis in synthetic speech. We first analyse the differences in the model parameters between emphasised words in an acted emphasis scenario and their neutral counterpart. We investigate word level intonation modelling using simple random forest as a basis framework, to predict the parameters of the model in the specific case of emphasised word. Based on the linguistic context of the words we want to emphasise, we attempt at recovering emphasis pattern in the intonation in originally neutral synthetic speech by gen-erating word-level model parameters with similar context. The method is presented and initial results are given, on synthetic speech.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We are interested in emphasis for text to speech synthesis. In speech to speech translation, emphasising the correct words is important to convey the underlying meaning of a message. In this paper, we propose to use a generalised command-response (CR) model of intonation to generate emphasis in synthetic speech. We first analyse the differences in the model parameters between emphasised words in an acted emphasis scenario and their neutral counterpart. We investigate word level intonation modelling using simple random forest as a basis framework, to predict the parameters of the model in the specific case of emphasised word. Based on the linguistic context of the words we want to emphasise, we attempt at recovering emphasis pattern in the intonation in originally neutral synthetic speech by gen-erating word-level model parameters with similar context. The method is presented and initial results are given, on synthetic speech.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用语调原子对TTS进行重音重建
我们感兴趣的是文本到语音合成的重点。在语音翻译中,强调正确的单词对于传达信息的潜在含义很重要。在本文中,我们提出使用一种广义命令响应(CR)语调模型来生成合成语音中的重音。我们首先分析了在动作强调场景中被强调词和它们的中性对应词之间模型参数的差异。我们研究了使用简单随机森林作为基础框架的词级语调建模,以预测模型在强调词的特定情况下的参数。基于所要强调的词的语言语境,我们试图通过生成具有相似语境的词级模型参数来恢复原中性合成语音语调中的重音模式。介绍了该方法,并给出了合成语音的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archiving pushed Inferences from Sensor Data Streams Parallel and cascaded deep neural networks for text-to-speech synthesis Merlin: An Open Source Neural Network Speech Synthesis System A Comparative Study of the Performance of HMM, DNN, and RNN based Speech Synthesis Systems Trained on Very Large Speaker-Dependent Corpora Nonaudible murmur enhancement based on statistical voice conversion and noise suppression with external noise monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1