Ultra-Short-term PV Power Forecasting Based on a Support Vector Machine with Improved Dragonfly Algorithm

D. J. Krishna Kishore, Maher Rashad Mohamed, K. Sudhakar, S. Jewaliddin, K. Peddakapu, P. S. Rao
{"title":"Ultra-Short-term PV Power Forecasting Based on a Support Vector Machine with Improved Dragonfly Algorithm","authors":"D. J. Krishna Kishore, Maher Rashad Mohamed, K. Sudhakar, S. Jewaliddin, K. Peddakapu, P. S. Rao","doi":"10.1109/ETI4.051663.2021.9619323","DOIUrl":null,"url":null,"abstract":"Photo-voltaic (PV) is one of the most abundant sources on the earth for the generation of electricity. Although, due to the stochastic nature of PV characteristics to sustain constant power, an accurate PV power prediction is needed for a grid-connected PV system. The proposed model of support vector machine (SVM) with improved dragonfly algorithm(IDA) is used to forecast the PV power. Previously, Theexecution can be done by dragonfly algorithm (DA) through adaptive learning factor along with the differential evolution technique. The IDA is used to select the best support vector machine parameters. Eventually, the suggested model provides better performance as compared to the other algorithm such as SVM with dragonfly algorithm(SVM-DA). It is suitable for forecasting ultra-short-term PV power.","PeriodicalId":129682,"journal":{"name":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","volume":"38 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Emerging Trends in Industry 4.0 (ETI 4.0)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETI4.051663.2021.9619323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photo-voltaic (PV) is one of the most abundant sources on the earth for the generation of electricity. Although, due to the stochastic nature of PV characteristics to sustain constant power, an accurate PV power prediction is needed for a grid-connected PV system. The proposed model of support vector machine (SVM) with improved dragonfly algorithm(IDA) is used to forecast the PV power. Previously, Theexecution can be done by dragonfly algorithm (DA) through adaptive learning factor along with the differential evolution technique. The IDA is used to select the best support vector machine parameters. Eventually, the suggested model provides better performance as compared to the other algorithm such as SVM with dragonfly algorithm(SVM-DA). It is suitable for forecasting ultra-short-term PV power.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进蜻蜓算法的支持向量机光伏超短期功率预测
光伏(PV)是地球上最丰富的发电资源之一。然而,由于光伏发电特性的随机性质,以维持恒定的功率,准确的光伏发电功率预测是一个并网光伏系统所需要的。提出了基于改进蜻蜓算法的支持向量机(SVM)模型,用于光伏发电功率预测。在此之前,可以采用蜻蜓算法(DA)通过自适应学习因子和差分进化技术来执行。IDA用于选择最佳的支持向量机参数。最后,与蜻蜓算法(SVM- da)等支持向量机算法相比,该模型具有更好的性能。适用于超短期光伏发电预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting Sybil Attack, Black Hole Attack and DoS Attack in VANET Using RSA Algorithm Real Time Servo Analysis of Non-Linear Conical Tank Level Control using Root Locus Technique Apply Blockchain Technology for Security of IoT Devices A Highly Efficient Intrusion Detection and Packet Tracking Based on Game Theory Approach Logistic Regression Model for Loan Prediction: A Machine Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1