The 1D Area Law and the Complexity of Quantum States: A Combinatorial Approach

D. Aharonov, I. Arad, Zeph Landau, U. Vazirani
{"title":"The 1D Area Law and the Complexity of Quantum States: A Combinatorial Approach","authors":"D. Aharonov, I. Arad, Zeph Landau, U. Vazirani","doi":"10.1109/FOCS.2011.91","DOIUrl":null,"url":null,"abstract":"The classical description of quantum states is in general exponential in the number of qubits. Can we get polynomial descriptions for more restricted sets of states such as ground states of interesting subclasses of local Hamiltonians? This is the basic problem in the study of the complexity of ground states, and requires an understanding of multi-particle entanglement and quantum correlations in such states. Area laws provide a fundamental ingredient in the study of the complexity of ground states, since they offer a way to bound in a quantitative way the entanglement in such states. Although they have long been conjectured for many body systems in arbitrary dimensions, a general rigorous was only recently proved in Hastings' seminal paper \\cite{ref:Has07} for 1D systems. In this paper, we give a combinatorial proof of the 1D area law for the special case of frustration free systems, improving by an exponential factor the scaling in terms of the inverse spectral gap and the dimensionality of the particles. The scaling in terms of the dimension of the particles is a potentially important issue in the context of resolving the 2D case and higher dimensions, which is one of the most important open questions in Hamiltonian complexity. Our proof is based on a reformulation of the detectability lemma, introduced by us in the context of quantum gap amplification\\cite{ref:Aha09b}. We give an alternative proof of the detectability lemma, which is not only simpler and more intuitive than the original proof, but also removes a key restriction in the original statement, making it more suitable for this new context. We also give a one page proof of Hastings' proof that the correlations in the ground states of gapped Hamiltonians decay exponentially with the distance, demonstrating the simplicity of the combinatorial approach for those problems.","PeriodicalId":326048,"journal":{"name":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 52nd Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2011.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The classical description of quantum states is in general exponential in the number of qubits. Can we get polynomial descriptions for more restricted sets of states such as ground states of interesting subclasses of local Hamiltonians? This is the basic problem in the study of the complexity of ground states, and requires an understanding of multi-particle entanglement and quantum correlations in such states. Area laws provide a fundamental ingredient in the study of the complexity of ground states, since they offer a way to bound in a quantitative way the entanglement in such states. Although they have long been conjectured for many body systems in arbitrary dimensions, a general rigorous was only recently proved in Hastings' seminal paper \cite{ref:Has07} for 1D systems. In this paper, we give a combinatorial proof of the 1D area law for the special case of frustration free systems, improving by an exponential factor the scaling in terms of the inverse spectral gap and the dimensionality of the particles. The scaling in terms of the dimension of the particles is a potentially important issue in the context of resolving the 2D case and higher dimensions, which is one of the most important open questions in Hamiltonian complexity. Our proof is based on a reformulation of the detectability lemma, introduced by us in the context of quantum gap amplification\cite{ref:Aha09b}. We give an alternative proof of the detectability lemma, which is not only simpler and more intuitive than the original proof, but also removes a key restriction in the original statement, making it more suitable for this new context. We also give a one page proof of Hastings' proof that the correlations in the ground states of gapped Hamiltonians decay exponentially with the distance, demonstrating the simplicity of the combinatorial approach for those problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一维面积定律与量子态的复杂性:一种组合方法
量子态的经典描述通常是量子位的数量呈指数增长。我们能否得到更有限的状态集的多项式描述比如局部哈密顿子的有趣子类的基态?这是研究基态复杂性的基本问题,需要理解基态中的多粒子纠缠和量子相关。区域定律为研究基态的复杂性提供了一个基本要素,因为它们提供了一种以定量方式束缚基态纠缠的方法。尽管长期以来,人们一直对任意维度的许多物体系统进行推测,但直到最近,黑斯廷斯的开创性论文\cite{ref:Has07}才证明了一维系统的一般严格性。本文给出了无挫折系统特殊情况下一维面积律的组合证明,通过指数因子改进了用逆谱隙和粒子维数表示的标度。在解决二维和高维情况下,粒子维度的缩放是一个潜在的重要问题,这是哈密顿复杂性中最重要的开放性问题之一。我们的证明是基于可探测引理的重新表述,由我们在量子间隙放大\cite{ref:Aha09b}的背景下引入。我们给出了一个可检测引理的替代证明,它不仅比原证明更简单直观,而且去掉了原陈述中的一个关键限制,使其更适合于这种新的情况。我们还用一页纸证明了黑斯廷斯关于间隙哈密顿量基态的相关性随距离呈指数衰减的证明,证明了这些问题的组合方法的简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Randomized Rounding Approach to the Traveling Salesman Problem Welfare and Profit Maximization with Production Costs Which Networks are Least Susceptible to Cascading Failures? Computing Blindfolded: New Developments in Fully Homomorphic Encryption The 1D Area Law and the Complexity of Quantum States: A Combinatorial Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1