A Communication-Optimal Framework for Contracting Distributed Tensors

Samyam Rajbhandari, Akshay Nikam, Pai-Wei Lai, Kevin Stock, S. Krishnamoorthy, P. Sadayappan
{"title":"A Communication-Optimal Framework for Contracting Distributed Tensors","authors":"Samyam Rajbhandari, Akshay Nikam, Pai-Wei Lai, Kevin Stock, S. Krishnamoorthy, P. Sadayappan","doi":"10.1109/SC.2014.36","DOIUrl":null,"url":null,"abstract":"Tensor contractions are extremely compute intensive generalized matrix multiplication operations encountered in many computational science fields, such as quantum chemistry and nuclear physics. Unlike distributed matrix multiplication, which has been extensively studied, limited work has been done in understanding distributed tensor contractions. In this paper, we characterize distributed tensor contraction algorithms on torus networks. We develop a framework with three fundamental communication operators to generate communication-efficient contraction algorithms for arbitrary tensor contractions. We show that for a given amount of memory per processor, the framework is communication optimal for all tensor contractions. We demonstrate performance and scalability of the framework on up to 262,144 cores on a Blue Gene/Q supercomputer.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Tensor contractions are extremely compute intensive generalized matrix multiplication operations encountered in many computational science fields, such as quantum chemistry and nuclear physics. Unlike distributed matrix multiplication, which has been extensively studied, limited work has been done in understanding distributed tensor contractions. In this paper, we characterize distributed tensor contraction algorithms on torus networks. We develop a framework with three fundamental communication operators to generate communication-efficient contraction algorithms for arbitrary tensor contractions. We show that for a given amount of memory per processor, the framework is communication optimal for all tensor contractions. We demonstrate performance and scalability of the framework on up to 262,144 cores on a Blue Gene/Q supercomputer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
收缩分布张量的通信最优框架
张量收缩是一种计算密集型的广义矩阵乘法运算,在量子化学和核物理等计算科学领域都有应用。与已被广泛研究的分布矩阵乘法不同,在理解分布张量收缩方面所做的工作有限。本文对环面网络上的分布张量收缩算法进行了刻画。我们开发了一个具有三个基本通信算子的框架,用于生成任意张量收缩的通信高效收缩算法。我们表明,对于每个处理器给定的内存量,该框架对于所有张量收缩是通信最优的。我们在Blue Gene/Q超级计算机上演示了该框架在高达262,144个内核上的性能和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microbank: Architecting Through-Silicon Interposer-Based Main Memory Systems Fast Iterative Graph Computation: A Path Centric Approach Fast Sparse Matrix-Vector Multiplication on GPUs for Graph Applications MSL: A Synthesis Enabled Language for Distributed Implementations A Communication-Optimal Framework for Contracting Distributed Tensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1