{"title":"Discovering human routines from cell phone data with topic models","authors":"K. Farrahi, D. Gática-Pérez","doi":"10.1109/ISWC.2008.4911580","DOIUrl":null,"url":null,"abstract":"We present a framework to automatically discover people's routines from information extracted by cell phones. The framework is built from a probabilistic topic model learned on novel bag type representations of activity-related cues (location, proximity and their temporal variations over a day) of peoples' daily routines. Using real-life data from the Reality Mining dataset, covering 68 000+ hours of human activities, we can successfully discover location-driven (from cell tower connections) and proximity-driven (from Bluetooth information) routines in an unsupervised manner. The resulting topics meaningfully characterize some of the underlying co-occurrence structure of the activities in the dataset, including ldquogoing to work early/laterdquo, ldquobeing home all dayrdquo, ldquoworking constantlyrdquo, ldquoworking sporadicallyrdquo and ldquomeeting at lunch timerdquo.","PeriodicalId":336550,"journal":{"name":"2008 12th IEEE International Symposium on Wearable Computers","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 12th IEEE International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWC.2008.4911580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
We present a framework to automatically discover people's routines from information extracted by cell phones. The framework is built from a probabilistic topic model learned on novel bag type representations of activity-related cues (location, proximity and their temporal variations over a day) of peoples' daily routines. Using real-life data from the Reality Mining dataset, covering 68 000+ hours of human activities, we can successfully discover location-driven (from cell tower connections) and proximity-driven (from Bluetooth information) routines in an unsupervised manner. The resulting topics meaningfully characterize some of the underlying co-occurrence structure of the activities in the dataset, including ldquogoing to work early/laterdquo, ldquobeing home all dayrdquo, ldquoworking constantlyrdquo, ldquoworking sporadicallyrdquo and ldquomeeting at lunch timerdquo.