Low-statistics reconstruction with AB-EMML

K. Erlandsson, D. Visvikis, W. Waddington, I. Cullum, P. Jarritt, L. S. Polowsky
{"title":"Low-statistics reconstruction with AB-EMML","authors":"K. Erlandsson, D. Visvikis, W. Waddington, I. Cullum, P. Jarritt, L. S. Polowsky","doi":"10.1109/NSSMIC.2000.950113","DOIUrl":null,"url":null,"abstract":"In dynamic SPECT studies with short acquisition times per time-frame, data with very low-statistics is obtained. For such cases standard iterative reconstruction algorithms based on multiplicative correction factors, automatically including a non-negativity constraint, might not be Ideal. The AB-EMML algorithm allows the user to include prior information on the upper and lower bounds for the image values. We have used this algorithm with a negative lower bound for reconstruction of low-statistics SPECT data in order to allow for negative image values. Our results show that this method can preserve quantitative accuracy at low count levels, where standard methods produces biased values. Furthermore, the noise is much more uniformly distributed-lower in high intensity regions and higher in low intensity regions. The convergence is generally slower, but faster in cold regions.","PeriodicalId":445100,"journal":{"name":"2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE Nuclear Science Symposium. Conference Record (Cat. No.00CH37149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2000.950113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In dynamic SPECT studies with short acquisition times per time-frame, data with very low-statistics is obtained. For such cases standard iterative reconstruction algorithms based on multiplicative correction factors, automatically including a non-negativity constraint, might not be Ideal. The AB-EMML algorithm allows the user to include prior information on the upper and lower bounds for the image values. We have used this algorithm with a negative lower bound for reconstruction of low-statistics SPECT data in order to allow for negative image values. Our results show that this method can preserve quantitative accuracy at low count levels, where standard methods produces biased values. Furthermore, the noise is much more uniformly distributed-lower in high intensity regions and higher in low intensity regions. The convergence is generally slower, but faster in cold regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用AB-EMML进行低统计量重建
在动态SPECT研究中,每个时间框架的采集时间较短,获得的数据具有非常低的统计量。对于这种情况,基于乘法校正因子的标准迭代重建算法(自动包括非负性约束)可能不是理想的。AB-EMML算法允许用户在图像值的上界和下界上包含先验信息。我们使用该算法与负下界重建低统计量SPECT数据,以允许负图像值。我们的结果表明,这种方法可以在低计数水平下保持定量准确性,而标准方法会产生偏差值。此外,噪声分布更加均匀,在高强度区域较低,在低强度区域较高。趋同通常较慢,但在寒冷地区更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a low-cost extruded scintillator with co-extruded reflector for the MINOS experiment The GREAT triggerless total data readout method Spatially dependent response of thick and large area PIN diode developed for ASTRO-E hard X-ray detector Implementation and evaluation of a 3D OSEM and median root prior (3D OSEM-MRP) reconstruction algorithm Comparison of the SSRB, MSRB, and FORE methods with the 3DRP algorithm using data from a high resolution PET scanner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1