Distributed Fleet Management in Noisy Environments via Model-Predictive Control

Simon Boegh, P. G. Jensen, Martin Kristjansen, K. Larsen, Ulrik Nyman
{"title":"Distributed Fleet Management in Noisy Environments via Model-Predictive Control","authors":"Simon Boegh, P. G. Jensen, Martin Kristjansen, K. Larsen, Ulrik Nyman","doi":"10.1609/icaps.v32i1.19843","DOIUrl":null,"url":null,"abstract":"We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SWGs in the form of a Euclidean Markov Decision Process (EMDP) in the tool Uppaal Stratego, which employs Q-Learning to synthesize near-optimal plans. Furthermore, we deploy the tool in an online and distributed fashion to facilitate scalable, rapid replanning. While executing their current plan, each AMR generates a new plan incorporating updated information about the other AMRs positions and plans. We propose a two-layer Model Predictive Controller-structure (waypoint and station planning), each individually solved by the Q-learning-based solver. We demonstrate our approach using ARGoS3 large-scale robot simulation, where we simulate the AMR movement and observe an up to 27.5% improvement in makespan over a greedy approach to planning. To do so, we have implemented the full software stack, translating observations into SWGs and solving those with our proposed method. In addition, we construct a benchmark platform for comparing planning techniques on a reasonably realistic physical simulation and provide this under the MIT open-source license.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SWGs in the form of a Euclidean Markov Decision Process (EMDP) in the tool Uppaal Stratego, which employs Q-Learning to synthesize near-optimal plans. Furthermore, we deploy the tool in an online and distributed fashion to facilitate scalable, rapid replanning. While executing their current plan, each AMR generates a new plan incorporating updated information about the other AMRs positions and plans. We propose a two-layer Model Predictive Controller-structure (waypoint and station planning), each individually solved by the Q-learning-based solver. We demonstrate our approach using ARGoS3 large-scale robot simulation, where we simulate the AMR movement and observe an up to 27.5% improvement in makespan over a greedy approach to planning. To do so, we have implemented the full software stack, translating observations into SWGs and solving those with our proposed method. In addition, we construct a benchmark platform for comparing planning techniques on a reasonably realistic physical simulation and provide this under the MIT open-source license.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型预测控制的噪声环境下分布式车队管理
我们考虑了一组在共享工厂车间进行取货和搬运任务的自主移动机器人(amr)的动态路线规划。在本文中,我们提出随机工作图(SWG)作为一种形式来捕获这种分布式和不确定规划问题的语义。我们在Uppaal Stratego工具中以欧几里得马尔可夫决策过程(EMDP)的形式对swg进行编码,该工具使用Q-Learning来综合接近最优的计划。此外,我们以在线和分布式的方式部署该工具,以促进可扩展的、快速的重新规划。在执行他们当前的计划时,每个AMR生成一个包含关于其他AMR位置和计划的更新信息的新计划。我们提出了一个两层模型预测控制器结构(航路点和站点规划),每层都由基于q学习的求解器单独求解。我们使用ARGoS3大规模机器人仿真来演示我们的方法,我们模拟了AMR运动,并观察到与贪婪规划方法相比,最大完工时间提高了27.5%。为此,我们实现了完整的软件堆栈,将观测结果转换为swg,并使用我们提出的方法解决这些问题。此外,我们构建了一个基准平台,用于比较合理逼真的物理模拟上的规划技术,并在MIT开源许可下提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1