S. Zanlongo, Franklin Abodo, P. Long, T. Padır, Leonardo Bobadilla
{"title":"Multi-robot Scheduling and Path-Planning for Non-overlapping Operator Attention","authors":"S. Zanlongo, Franklin Abodo, P. Long, T. Padır, Leonardo Bobadilla","doi":"10.1109/IRC.2018.00021","DOIUrl":null,"url":null,"abstract":"There is a growing need for robots to perform complex tasks autonomously. However, there remain certain tasks that cannot - or should not - be completely automated. While these tasks may require one or several operators, we can oftentimes schedule when an operator should assist. We build on our previous work to present a methodology for allocating operator attention across multiple robots while attempting to minimize the execution time of the robots involved. In this paper, we: 1) Analyze of the complexity of this problem, 2) Provide a scalable methodology for designing robot policies so that few operators can oversee many robots, 3) Describe a methodology for designing both policies and robot trajectories to permit operators to assist many robots, and 4) Present simulation and hardware experiments demonstrating our methodologies.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
There is a growing need for robots to perform complex tasks autonomously. However, there remain certain tasks that cannot - or should not - be completely automated. While these tasks may require one or several operators, we can oftentimes schedule when an operator should assist. We build on our previous work to present a methodology for allocating operator attention across multiple robots while attempting to minimize the execution time of the robots involved. In this paper, we: 1) Analyze of the complexity of this problem, 2) Provide a scalable methodology for designing robot policies so that few operators can oversee many robots, 3) Describe a methodology for designing both policies and robot trajectories to permit operators to assist many robots, and 4) Present simulation and hardware experiments demonstrating our methodologies.