Data-Driven Fuzzy Modelling Methodologies for Multivariable Nonlinear Systems

J. S. Junior, E. B. M. Costa
{"title":"Data-Driven Fuzzy Modelling Methodologies for Multivariable Nonlinear Systems","authors":"J. S. Junior, E. B. M. Costa","doi":"10.1109/IS.2018.8710486","DOIUrl":null,"url":null,"abstract":"In this paper, two methodologies of data-driven fuzzy modelling for multivariable nonlinear systems based on Observer/Kalman Filter Identification (OKID) and the Eigensystem Realization Algorithm (ERA) are proposed. The multivariable nonlinear system is represented by a fuzzy Takagi-Sugeno (TS) model, whose antecedent is constituted by linguistic variables (fuzzy sets) and the consequent is constituted by linear submodels in state-space discrete representation. The antecedent parameters are obtained using clustering fuzzy algorithms and the consequent parameters (state matrix, input matrix, output matrix and direct transition matrix) are obtained using the algorithm discussed in this article. Experimental results for identification of a Quadrotor Unmanned Aerial Vehicle (UAV) are presented, in order to illustrate the efficiency and applicability of the methodologies in real systems with coupled data and real systems with decoupled data.","PeriodicalId":129583,"journal":{"name":"IEEE Conf. on Intelligent Systems","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Conf. on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IS.2018.8710486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, two methodologies of data-driven fuzzy modelling for multivariable nonlinear systems based on Observer/Kalman Filter Identification (OKID) and the Eigensystem Realization Algorithm (ERA) are proposed. The multivariable nonlinear system is represented by a fuzzy Takagi-Sugeno (TS) model, whose antecedent is constituted by linguistic variables (fuzzy sets) and the consequent is constituted by linear submodels in state-space discrete representation. The antecedent parameters are obtained using clustering fuzzy algorithms and the consequent parameters (state matrix, input matrix, output matrix and direct transition matrix) are obtained using the algorithm discussed in this article. Experimental results for identification of a Quadrotor Unmanned Aerial Vehicle (UAV) are presented, in order to illustrate the efficiency and applicability of the methodologies in real systems with coupled data and real systems with decoupled data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多变量非线性系统的数据驱动模糊建模方法
本文提出了两种基于观测器/卡尔曼滤波辨识(OKID)和特征系统实现算法(ERA)的多变量非线性系统数据驱动模糊建模方法。多变量非线性系统用模糊Takagi-Sugeno (TS)模型表示,该模型的前件由语言变量(模糊集)构成,后件由状态空间离散表示的线性子模型构成。采用聚类模糊算法获得前置参数,采用本文所讨论的算法获得后置参数(状态矩阵、输入矩阵、输出矩阵和直接转移矩阵)。给出了四旋翼无人机(UAV)识别的实验结果,以说明该方法在具有耦合数据的实际系统和具有解耦数据的实际系统中的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generation of Two Turbine Hill Chart Using Artificial Neural Networks Data-Driven Fuzzy Modelling Methodologies for Multivariable Nonlinear Systems Distributed Control and Navigation System for Quadrotor UAVs in GPS-Denied Environments Effective Outlier Detection Technique with Adaptive Choice of Input Parameters A Knowledge-Driven Tool for Automatic Activity Dataset Annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1