Convolutional Neural Network

Ravishankar Chityala, Sridevi Pudipeddi
{"title":"Convolutional Neural Network","authors":"Ravishankar Chityala, Sridevi Pudipeddi","doi":"10.1201/9780429243370-12","DOIUrl":null,"url":null,"abstract":"CNNs are regularized versions of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. The “fully-connectedness” of these networks makes them prone to overfitting data. Typical ways of regularization include adding some form of magnitude measurement of weights to the loss function. However, CNNs take a different approach towards regularization: they take advantage of the hierarchical pattern in data and assemble more complex patterns using smaller and simpler patterns. Therefore, on the scale of connectedness and complexity, CNNs are on the lower extreme.","PeriodicalId":166422,"journal":{"name":"Image Processing and Acquisition using Python","volume":"97 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Processing and Acquisition using Python","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429243370-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

CNNs are regularized versions of multilayer perceptrons. Multilayer perceptrons usually mean fully connected networks, that is, each neuron in one layer is connected to all neurons in the next layer. The “fully-connectedness” of these networks makes them prone to overfitting data. Typical ways of regularization include adding some form of magnitude measurement of weights to the loss function. However, CNNs take a different approach towards regularization: they take advantage of the hierarchical pattern in data and assemble more complex patterns using smaller and simpler patterns. Therefore, on the scale of connectedness and complexity, CNNs are on the lower extreme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卷积神经网络
cnn是多层感知器的正则化版本。多层感知器通常意味着完全连接的网络,即一层中的每个神经元都连接到下一层的所有神经元。这些网络的“完全连接”使它们容易出现数据过拟合。典型的正则化方法包括向损失函数中添加某种形式的权重大小度量。然而,cnn采用了一种不同的方法来实现正则化:它们利用数据中的分层模式,用更小更简单的模式组合更复杂的模式。因此,在连通性和复杂性的尺度上,cnn处于较低的极端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affine Transformation Convolutional Neural Network Image Measurements Spatial Filters Electron Microscopes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1