Accretion Machining by EDM with Thin Electrode (1st Report)

H. Takezawa, N. Mohri, K. Furutani
{"title":"Accretion Machining by EDM with Thin Electrode (1st Report)","authors":"H. Takezawa, N. Mohri, K. Furutani","doi":"10.2526/JSEME.34.76_34","DOIUrl":null,"url":null,"abstract":"Accretion machining by electrical discharge machining (EDM) with a high wear rate of green compact or semisintered electrodes has recently been carried out. Also, it has been observed that the wear rate of thin electrodes for various materials is very high with a high discharge current. In this study, a thin tungsten electrode is used for material accretion or surface modification of a small area. For this purpose, continuous discharge and single discharge machining experiments were performed by EDM with a thin electrode. Then the voltage and current waveforms and the cross section of the accreted surface were observed. In accretion machining, these waveforms revealed a continuous short-circuit phenomenon and a wire explosion phenomenon subsequent to the continuous short-circuited state. These observations indicated that the accreted layer was very hard (1000HV) and that the accretion area was very small (150μm in diameter). This clearly indicates that microaccretion machining can be performed using this technique.","PeriodicalId":269071,"journal":{"name":"Journal of the Japan Society of Electrical-machining Engineers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Society of Electrical-machining Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2526/JSEME.34.76_34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accretion machining by electrical discharge machining (EDM) with a high wear rate of green compact or semisintered electrodes has recently been carried out. Also, it has been observed that the wear rate of thin electrodes for various materials is very high with a high discharge current. In this study, a thin tungsten electrode is used for material accretion or surface modification of a small area. For this purpose, continuous discharge and single discharge machining experiments were performed by EDM with a thin electrode. Then the voltage and current waveforms and the cross section of the accreted surface were observed. In accretion machining, these waveforms revealed a continuous short-circuit phenomenon and a wire explosion phenomenon subsequent to the continuous short-circuited state. These observations indicated that the accreted layer was very hard (1000HV) and that the accretion area was very small (150μm in diameter). This clearly indicates that microaccretion machining can be performed using this technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
薄电极电火花吸积加工(第一期报告)
利用高磨损率的绿色致密或半互连电极进行放电加工(EDM)是近年来开展的一项研究。此外,还观察到,在高放电电流下,各种材料的薄电极的磨损率都很高。在本研究中,使用薄钨电极进行小面积的材料吸积或表面改性。为此,利用薄电极进行了连续放电和单放电电火花加工实验。然后观察了增积表面的电压、电流波形和截面。在吸积加工过程中,这些波形表现出连续短路现象和连续短路状态后的爆丝现象。这些观测结果表明,吸积层非常坚硬(1000HV),吸积面积很小(直径150μm)。这清楚地表明,微吸积加工可以使用这种技术进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Consideration of Formation Mechanism of Conductive Layer in Electrical Discharge Machining of Insulating Si 3 N 4 Ceramics Electrochemical Machining of Sintered Carbide (1st Report): - Prevention of Excessive Co Elution -@@@-Coの溶出防止の方法- 形彫り放電加工特性に及ぼす放電加工油物性の影響(第1報) : 導電性材料の放電加工の場合 Study on effect of assist gas in electrolyte jet machining Nanometer-Resolution Cross Sectional Observation of the Changes in Multilayer Thin Films and Substrates due to Laser Ablation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1