{"title":"Dual – Band Microtrip Quasi – Yagi Antenna Design for Free Band and 5G Mobile Communication","authors":"F. T. Çelik, K. Karacuhha","doi":"10.1109/DIPED.2018.8543132","DOIUrl":null,"url":null,"abstract":"In this work, numerical and experimental analyses of a dual-band microstrip patch dipole-loop antenna are done. This design operates at amateur radio, amateur satellite (2.3-2.4 GHz) band and planned 5G mobile communication band; 3.4-3.8 GHz frequencies. There are two different radiating structures and regions in this antenna. One of the radiating structure is a rectangle shaped loop which is responsible for operation at lower frequency (2.3-2.4 GHz) and the other structure is a printed dipole which is responsible for operation of the upper (3.4-3.6 Hz) frequency. Apart from different operation frequencies, these structures also illustrates different radiation characteristics. The loop shaped region radiates bi-directional broadside radiation while the dipole part radiates with higher gain (peak gain 5 dBi). Proposed design is validated by High Frequency Structure Simulator (HFSS) and also measurements are carried out on fabricated prototype.","PeriodicalId":146873,"journal":{"name":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 XXIIIrd International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DIPED.2018.8543132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this work, numerical and experimental analyses of a dual-band microstrip patch dipole-loop antenna are done. This design operates at amateur radio, amateur satellite (2.3-2.4 GHz) band and planned 5G mobile communication band; 3.4-3.8 GHz frequencies. There are two different radiating structures and regions in this antenna. One of the radiating structure is a rectangle shaped loop which is responsible for operation at lower frequency (2.3-2.4 GHz) and the other structure is a printed dipole which is responsible for operation of the upper (3.4-3.6 Hz) frequency. Apart from different operation frequencies, these structures also illustrates different radiation characteristics. The loop shaped region radiates bi-directional broadside radiation while the dipole part radiates with higher gain (peak gain 5 dBi). Proposed design is validated by High Frequency Structure Simulator (HFSS) and also measurements are carried out on fabricated prototype.