Extracting bilingual multi-word expressions for low-resource statistical machine translation

Linyu Wei, Miao Li, Lei Chen, Zhenxin Yang, Kai Sun, Man Yuan
{"title":"Extracting bilingual multi-word expressions for low-resource statistical machine translation","authors":"Linyu Wei, Miao Li, Lei Chen, Zhenxin Yang, Kai Sun, Man Yuan","doi":"10.1109/IALP.2015.7451522","DOIUrl":null,"url":null,"abstract":"Improving the performance of statistical machine translation is often a significant problem, especially in low language resource scenarios such as Chinese-Mongolian SMT. In this paper, we propose a method to improve the performance of Chinese-Mongolian SMT system using multi-word expressions, which is also a pilot study for this language pair. We extract MWEs from the phrase-table then integrate the MWEs into SMT system by various strategies. Experimental results indicate our method outperforms a baseline model by 0.81 BLEU points on Test-All and 1.54 BLEU points on Test-MWE.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the performance of statistical machine translation is often a significant problem, especially in low language resource scenarios such as Chinese-Mongolian SMT. In this paper, we propose a method to improve the performance of Chinese-Mongolian SMT system using multi-word expressions, which is also a pilot study for this language pair. We extract MWEs from the phrase-table then integrate the MWEs into SMT system by various strategies. Experimental results indicate our method outperforms a baseline model by 0.81 BLEU points on Test-All and 1.54 BLEU points on Test-MWE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向低资源统计机器翻译的双语多词表达式提取
提高统计机器翻译的性能往往是一个重要的问题,特别是在语言资源匮乏的场景下,如汉蒙SMT。在本文中,我们提出了一种使用多词表达来提高汉蒙SMT系统性能的方法,这也是对该语言对的初步研究。我们从短语表中提取MWEs,然后通过各种策略将MWEs集成到SMT系统中。实验结果表明,我们的方法在Test-All和Test-MWE上分别比基线模型高出0.81和1.54 BLEU点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Chinese word segmentation and punctuation prediction using deep recurrent neural network for social media data Rumor diffusion purpose analysis from social attribute to social content Multilingual Viewpoint Detection from news comments Machine translation from Japanese and French to Vietnamese, the difference among language families Japanese sentence compression using Simple English Wikipedia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1