Unmanned surface vehicle adaptive decision model for changing weather

Han Zhang, Xinzhi Wang, Xiangfeng Luo, Shaorong Xie, Shixiong Zhu
{"title":"Unmanned surface vehicle adaptive decision model for changing weather","authors":"Han Zhang, Xinzhi Wang, Xiangfeng Luo, Shaorong Xie, Shixiong Zhu","doi":"10.1504/IJCSE.2021.113634","DOIUrl":null,"url":null,"abstract":"The autonomous decision-making capability of unmanned surface vehicles (USV) is the basis for many tasks. Most of the works ignore the variability of the scene. For example, traditional decision-making methods are not adaptable to changing weather that a USV is likely to encounter. In order to solve the low adaptability problem of a USV using single decision model in changing weather, we propose an adaptive model of USV based on human memory cognitive process. The USV first stores the perceived weather features in sensory memory. Then, it combines weather characteristics with prior knowledge to classify the weather in perceptual associative memory. Finally, USV calls different decision models stored in long-term memory based on the current weather category to make the decision. Simulated experiments are carried out on USV obstacle avoidance decision task in Unity3D. Experiments show that our model performs better than using only a single decision model.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2021.113634","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The autonomous decision-making capability of unmanned surface vehicles (USV) is the basis for many tasks. Most of the works ignore the variability of the scene. For example, traditional decision-making methods are not adaptable to changing weather that a USV is likely to encounter. In order to solve the low adaptability problem of a USV using single decision model in changing weather, we propose an adaptive model of USV based on human memory cognitive process. The USV first stores the perceived weather features in sensory memory. Then, it combines weather characteristics with prior knowledge to classify the weather in perceptual associative memory. Finally, USV calls different decision models stored in long-term memory based on the current weather category to make the decision. Simulated experiments are carried out on USV obstacle avoidance decision task in Unity3D. Experiments show that our model performs better than using only a single decision model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向天气变化的无人水面车辆自适应决策模型
无人水面车辆的自主决策能力是完成许多任务的基础。大多数作品忽略了场景的可变性。例如,传统的决策方法不能适应USV可能遇到的不断变化的天气。为了解决USV在天气变化中采用单一决策模型的适应性较低的问题,提出了一种基于人类记忆认知过程的USV自适应模型。USV首先将感知到的天气特征存储在感官记忆中。然后,将天气特征与先验知识相结合,对感知联想记忆中的天气进行分类。最后,USV根据当前天气类别调用存储在长期记忆中的不同决策模型来做出决策。在Unity3D中对USV避障决策任务进行了仿真实验。实验表明,该模型比单一决策模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1