On Learning Context-Free Grammars Using Skeletons

G. L. Prajapati, N. Chaudhari, M. Chandwani
{"title":"On Learning Context-Free Grammars Using Skeletons","authors":"G. L. Prajapati, N. Chaudhari, M. Chandwani","doi":"10.1109/ICETET.2008.167","DOIUrl":null,"url":null,"abstract":"In 1992, Sakakibara introduced a well-known approach for learning context-free grammars from positive samples of structural descriptions (skeletons). In particular, Sakakibarapsilas approach uses reversible tree automata construction algorithm RT. Here, we introduce a modification of the learning algorithm RT for reversible tree automata. With respect to n, where n is the sum of the sizes of the input skeletons, our modification for RT, called e_RT, needs O(n3) operations and achieves the storage space saving by a factor of O(n) over RT. Using our e_RT, we give an algorithm e_RC to learn reversible context-free grammars from positive samples of their structural descriptions. Furthermore, we modify e_RC to learn extended reversible context-free grammars from positive-only examples. Finally, we present summary of our experiments carried out to see how our results compare with those of Sakakibara, which also confirms our approach as efficient and useful.","PeriodicalId":269929,"journal":{"name":"2008 First International Conference on Emerging Trends in Engineering and Technology","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 First International Conference on Emerging Trends in Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETET.2008.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 1992, Sakakibara introduced a well-known approach for learning context-free grammars from positive samples of structural descriptions (skeletons). In particular, Sakakibarapsilas approach uses reversible tree automata construction algorithm RT. Here, we introduce a modification of the learning algorithm RT for reversible tree automata. With respect to n, where n is the sum of the sizes of the input skeletons, our modification for RT, called e_RT, needs O(n3) operations and achieves the storage space saving by a factor of O(n) over RT. Using our e_RT, we give an algorithm e_RC to learn reversible context-free grammars from positive samples of their structural descriptions. Furthermore, we modify e_RC to learn extended reversible context-free grammars from positive-only examples. Finally, we present summary of our experiments carried out to see how our results compare with those of Sakakibara, which also confirms our approach as efficient and useful.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于使用框架学习上下文无关语法
1992年,Sakakibara介绍了一种著名的方法,用于从结构描述的正面样本(骨架)中学习上下文无关语法。特别是,Sakakibarapsilas方法使用可逆树自动机构建算法RT。在这里,我们介绍了对可逆树自动机学习算法RT的修改。对于n,其中n是输入骨架大小的总和,我们对RT的修改称为e_RT,需要O(n3)次操作,并通过O(n) / RT节省存储空间。使用我们的e_RT,我们给出了一个算法e_RC从其结构描述的正样本中学习可逆的上下文无关语法。此外,我们修改e_RC以从仅限正的示例中学习扩展的可逆上下文无关语法。最后,我们总结了我们所进行的实验,看看我们的结果与Sakakibara的结果如何比较,这也证实了我们的方法是有效和有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traffic Analysis of MPLS and Non MPLS Network including MPLS Signaling Protocols and Traffic Distribution in OSPF and MPLS Texture and Wavelet-Based Spoof Fingerprint Detection for Fingerprint Biometric Systems Cmos Mixed Signal Design of Fuzzy Logic Based Systems QoS Aware Stable path Routing (QASR) Protocol for MANETs ASIC Implementation of 4 Bit Multipliers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1