Transfer Learning-Based Classification of Gastrointestinal Polyps

Ioan Sima, Kristijan Cincar
{"title":"Transfer Learning-Based Classification of Gastrointestinal Polyps","authors":"Ioan Sima, Kristijan Cincar","doi":"10.1109/BIBE52308.2021.9635497","DOIUrl":null,"url":null,"abstract":"We used a deep learning model, called Inception V3, to classify colorectal polyps into: hyperplastic, serrated and adenoma lesions using colonoscopy images. Inception V3 is a convolution neural network (CNN) pre-trained on an extremely large dataset, which is based on multi-branch convolutional networks. Because we have a relative small dataset, we use transfer learning (TL) to transfer the optimal weights of hundreds of hours of training across multiple high-power GPUs. A dataset 152 instances containing 76 polyps belonging to the three lesion types was used. We re-trained the last five layers of Inception V3 with two-thirds of the images in the dataset. The results obtained with our new neural network model are satisfactory compared to other works and human experts.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We used a deep learning model, called Inception V3, to classify colorectal polyps into: hyperplastic, serrated and adenoma lesions using colonoscopy images. Inception V3 is a convolution neural network (CNN) pre-trained on an extremely large dataset, which is based on multi-branch convolutional networks. Because we have a relative small dataset, we use transfer learning (TL) to transfer the optimal weights of hundreds of hours of training across multiple high-power GPUs. A dataset 152 instances containing 76 polyps belonging to the three lesion types was used. We re-trained the last five layers of Inception V3 with two-thirds of the images in the dataset. The results obtained with our new neural network model are satisfactory compared to other works and human experts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于迁移学习的胃肠道息肉分类
我们使用了一个名为Inception V3的深度学习模型,利用结肠镜检查图像将结直肠息肉分为:增生性、锯齿状和腺瘤病变。Inception V3是一个基于多分支卷积网络的在超大数据集上预训练的卷积神经网络(CNN)。因为我们有一个相对较小的数据集,我们使用迁移学习(TL)在多个高性能gpu上转移数百小时训练的最佳权重。使用了包含76个属于三种病变类型的息肉的152个实例的数据集。我们用数据集中三分之二的图像重新训练了Inception V3的最后五层。与其他文献和专家相比,我们的神经网络模型得到了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1