Keyword Extraction for Social Media Short Text

Dexin Zhao, Nana Du, Zhi Chang, Yukun Li
{"title":"Keyword Extraction for Social Media Short Text","authors":"Dexin Zhao, Nana Du, Zhi Chang, Yukun Li","doi":"10.1109/WISA.2017.12","DOIUrl":null,"url":null,"abstract":"With the booming development of social media in recent years, researchers have begun to pay more attention to extracting personal profiles from information. Keyword extraction plays an important role in extracting personal profiles. However, most of the previous studies are only valid for ordinary text, but not ideal for social media short text. In this paper, we propose an improved method for keyword extraction based on Word2vec and Textrank to solve the unique problem of social media short text. Our approach uses the Word2vec to capture the semantic features between words in selected text, and meanwhile naturally fuses the word frequency, semantic relation and directional relation into Textrank to extract keywords. We conduct the experiments on the three datasets. The experimental results show the superior performance of our method in keyword extraction.","PeriodicalId":204706,"journal":{"name":"2017 14th Web Information Systems and Applications Conference (WISA)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Web Information Systems and Applications Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

With the booming development of social media in recent years, researchers have begun to pay more attention to extracting personal profiles from information. Keyword extraction plays an important role in extracting personal profiles. However, most of the previous studies are only valid for ordinary text, but not ideal for social media short text. In this paper, we propose an improved method for keyword extraction based on Word2vec and Textrank to solve the unique problem of social media short text. Our approach uses the Word2vec to capture the semantic features between words in selected text, and meanwhile naturally fuses the word frequency, semantic relation and directional relation into Textrank to extract keywords. We conduct the experiments on the three datasets. The experimental results show the superior performance of our method in keyword extraction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体短文本关键字提取
近年来,随着社交媒体的蓬勃发展,从信息中提取个人资料的研究开始受到越来越多的关注。关键词提取在个人资料提取中起着重要的作用。然而,以往的研究大多只对普通文本有效,对社交媒体短文本的研究并不理想。本文提出了一种基于Word2vec和Textrank的改进关键字提取方法,以解决社交媒体短文本特有的问题。我们的方法是利用Word2vec捕获所选文本中词之间的语义特征,同时将词频、语义关系和方向关系自然地融合到Textrank中提取关键词。我们在三个数据集上进行实验。实验结果表明,该方法在关键字提取方面具有优异的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Time Series Classification via Sparse Linear Combination Checking the Statutes in Chinese Judgment Document Based on Editing Distance Algorithm Information Extraction from Chinese Judgment Documents Topic Classification Based on Improved Word Embedding Keyword Extraction for Social Media Short Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1