Emission and Valve Point Loading Cost Using Superiority of Feasible Solutions-Moth Flame Optimization

M. Alam, Mohd Herwan Bin Sulaiman, M. Sayem, Shahriar Imtiaz, M. M. A. Ringku, R. Khan
{"title":"Emission and Valve Point Loading Cost Using Superiority of Feasible Solutions-Moth Flame Optimization","authors":"M. Alam, Mohd Herwan Bin Sulaiman, M. Sayem, Shahriar Imtiaz, M. M. A. Ringku, R. Khan","doi":"10.1109/ECCE57851.2023.10101593","DOIUrl":null,"url":null,"abstract":"The optimal power flow (OPF) the most crucial instrument for power facility design and performance is analysis, load scheduling, and cost-effective dispatch. To determine the evidence of a steady state for a power system network, an optimal power flow analysis is required. This study introduces a novel optimization method called Superiority of Feasible Solutions-Moth Flame Optimization (SH-MFO) to answer the optimal power flow problem. As part of the MATLAB development, SH-MFO is implemented on the IEEE-30 bus standard experiment structure network. When compared to the reliable outcomes produced by other algorithms, the current study employing SH-MFO estimates a Generation and Emission Costs $ 48.6827 $/h for minimizing the different fuels, which ultimately proves to be the best value. Analyze the poorest options suggested by the comparison algorithm, it saves money by 0.9873 % per hour. Based on simulation results, the SH-MFO method provides an improved and effective optimization algorithm for optimal power flow problems.","PeriodicalId":131537,"journal":{"name":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electrical, Computer and Communication Engineering (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE57851.2023.10101593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The optimal power flow (OPF) the most crucial instrument for power facility design and performance is analysis, load scheduling, and cost-effective dispatch. To determine the evidence of a steady state for a power system network, an optimal power flow analysis is required. This study introduces a novel optimization method called Superiority of Feasible Solutions-Moth Flame Optimization (SH-MFO) to answer the optimal power flow problem. As part of the MATLAB development, SH-MFO is implemented on the IEEE-30 bus standard experiment structure network. When compared to the reliable outcomes produced by other algorithms, the current study employing SH-MFO estimates a Generation and Emission Costs $ 48.6827 $/h for minimizing the different fuels, which ultimately proves to be the best value. Analyze the poorest options suggested by the comparison algorithm, it saves money by 0.9873 % per hour. Based on simulation results, the SH-MFO method provides an improved and effective optimization algorithm for optimal power flow problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用可行方案优越性的排放和阀点加载成本-飞蛾火焰优化
最优潮流(OPF)分析、负荷调度和经济高效调度是电力设施设计和运行的关键工具。为了确定电网稳定状态的证据,需要进行最优潮流分析。本文提出了一种新的优化方法——可行优解法蛾焰优化(SH-MFO)来解决最优潮流问题。作为MATLAB开发的一部分,SH-MFO在IEEE-30总线标准实验结构网络上实现。与其他算法产生的可靠结果相比,目前采用SH-MFO的研究估计,最小化不同燃料的发电和排放成本为48.6827美元/小时,最终证明这是最优值。分析比较算法建议的最差选项,每小时节省资金0.9873%。基于仿真结果,SH-MFO方法为最优潮流问题提供了一种改进的、有效的优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cyclone Prediction Visualization Tools Using Machine Learning Models and Optical Flow Exploratory Perspective of PV Net-Energy-Metering for Residential Prosumers: A Case Study in Dhaka, Bangladesh Estimation of Soil Moisture with Meteorological Variables in Supervised Machine Learning Models Deep CNN-GRU Based Human Activity Recognition with Automatic Feature Extraction Using Smartphone and Wearable Sensors Bengali-English Neural Machine Translation Using Deep Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1