Probabilistic short-circuit analysis of wind power system based on sampling with optimal density function

Shenghu Li, Zhuang Qian, Xiaoyan Zhang
{"title":"Probabilistic short-circuit analysis of wind power system based on sampling with optimal density function","authors":"Shenghu Li, Zhuang Qian, Xiaoyan Zhang","doi":"10.1109/PMAPS.2016.7764117","DOIUrl":null,"url":null,"abstract":"Probabilistic short-circuit analysis (PSCA) determines vulnerability of the transmission systems. The failure uncertainty and fluctuating wind power add difficulty to PSCA. The pre-fault system states are derived by simultaneous solution to steady state constraints of power system and the doubly-fed induction generators (DFIGs). A hybrid probabilistic simulation is newly proposed, with the fault branches enumerated and probabilistically weighted, while the fault parameters sampled. The variance coefficient of hybrid Monte-Carlo (HMC) simulation is defined to describe the convergence, which is speeded up by the optimal HMC (OPHMC) with the density function of the fault types. The numerical analysis of IEEE RTS system shows the impacts of high-order fault and wind power by comparing expectation, variance, and distribution of the bus voltage and branch current. The accuracy, convergence, efficiency of Monte-Carlo (MC), HMC and OPHMC methods are compared.","PeriodicalId":265474,"journal":{"name":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMAPS.2016.7764117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic short-circuit analysis (PSCA) determines vulnerability of the transmission systems. The failure uncertainty and fluctuating wind power add difficulty to PSCA. The pre-fault system states are derived by simultaneous solution to steady state constraints of power system and the doubly-fed induction generators (DFIGs). A hybrid probabilistic simulation is newly proposed, with the fault branches enumerated and probabilistically weighted, while the fault parameters sampled. The variance coefficient of hybrid Monte-Carlo (HMC) simulation is defined to describe the convergence, which is speeded up by the optimal HMC (OPHMC) with the density function of the fault types. The numerical analysis of IEEE RTS system shows the impacts of high-order fault and wind power by comparing expectation, variance, and distribution of the bus voltage and branch current. The accuracy, convergence, efficiency of Monte-Carlo (MC), HMC and OPHMC methods are compared.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最优密度函数抽样的风电系统概率短路分析
概率短路分析(PSCA)确定了输电系统的脆弱性。失效的不确定性和风电功率的波动增加了PSCA的难度。通过同时求解电力系统和双馈感应发电机的稳态约束,导出了故障前系统的状态。提出了一种混合概率仿真方法,对故障分支进行枚举和概率加权,同时对故障参数进行采样。定义了混合蒙特卡罗(HMC)仿真的方差系数来描述收敛性,最优的HMC (OPHMC)以故障类型的密度函数加快了收敛性。对IEEE RTS系统进行了数值分析,通过比较母线电压和支路电流的期望、方差和分布,揭示了高阶故障对风力发电的影响。比较了Monte-Carlo (MC)、HMC和OPHMC方法的精度、收敛性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A performance and maintenance evaluation framework for wind turbines Transmission network expansion planning with stochastic multivariate load and wind modeling The anomalous data identification study of reactive power optimization system based on big data A resilient power system operation strategy considering presumed attacks The use of Markov chain method to determine spare transformer number with 3-criteria parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1