End-to-End Speech Recognition for Low Resource Language Sanskrit using Self-Supervised Learning

S. Holla, T. Kumar, Jeevan Revaneppa Hiretanad, K. Deepak, A. V. Narasimhadhan
{"title":"End-to-End Speech Recognition for Low Resource Language Sanskrit using Self-Supervised Learning","authors":"S. Holla, T. Kumar, Jeevan Revaneppa Hiretanad, K. Deepak, A. V. Narasimhadhan","doi":"10.1109/wispnet54241.2022.9767118","DOIUrl":null,"url":null,"abstract":"We are presenting the work on building a speaker independent, continuous speech recognition system for Samskruta (also called Sanskrit) using self-supervised learning. We have used a Pre-trained model from the Vakyansh team where the model is trained using 10,000 Hrs of data with 23 Indic languages and Fine-tuned it using a data-set containing nearly 78 Hrs of Samskruta audio along with their transcription taken from Vaksancaya - Sanskrit Speech Corpus from IIT Bombay. Acoustic representations are learned in an end-to-end deep learning approach using the wav2vec2.0 architecture from Fairseq. On top of this acoustic model, a language model is used to increase the overall performance. Our system provides a word error rate (WER) of 5.1 % on test data and 2.4% on train data. Meanwhile we built a graphical user interface in the form of a web page using the Flask framework, which provides an interactive platform for the user to record audio and see the transcription in real-time. To the best of our knowledge, our approach using self-supervised learning, gives better performance compared to the state of the art methods.","PeriodicalId":432794,"journal":{"name":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wispnet54241.2022.9767118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We are presenting the work on building a speaker independent, continuous speech recognition system for Samskruta (also called Sanskrit) using self-supervised learning. We have used a Pre-trained model from the Vakyansh team where the model is trained using 10,000 Hrs of data with 23 Indic languages and Fine-tuned it using a data-set containing nearly 78 Hrs of Samskruta audio along with their transcription taken from Vaksancaya - Sanskrit Speech Corpus from IIT Bombay. Acoustic representations are learned in an end-to-end deep learning approach using the wav2vec2.0 architecture from Fairseq. On top of this acoustic model, a language model is used to increase the overall performance. Our system provides a word error rate (WER) of 5.1 % on test data and 2.4% on train data. Meanwhile we built a graphical user interface in the form of a web page using the Flask framework, which provides an interactive platform for the user to record audio and see the transcription in real-time. To the best of our knowledge, our approach using self-supervised learning, gives better performance compared to the state of the art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自监督学习的低资源语言梵文端到端语音识别
我们正在介绍使用自监督学习为Samskruta(也称为梵语)建立一个独立于说话人的连续语音识别系统的工作。我们使用了来自Vakyansh团队的预训练模型,该模型使用23种印度语言的10,000小时数据进行训练,并使用包含近78小时Samskruta音频的数据集对其进行微调,以及来自印度理工学院孟买分校的Vaksancaya梵语语料库的转录。使用Fairseq的wav2vec2.0架构,以端到端的深度学习方法学习声学表示。在声学模型之上,使用语言模型来提高整体性能。该系统在测试数据上的单词错误率为5.1%,在列车数据上的错误率为2.4%。同时,我们使用Flask框架构建了一个网页形式的图形用户界面,为用户提供了一个实时录制音频和查看转录的交互平台。据我们所知,我们使用自监督学习的方法,与最先进的方法相比,提供了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modified Simultaneous Weighted – OMP Based Channel Estimation and Hybrid Precoding for Massive MIMO Systems Zero Padded Dual Index Trimode OFDM-IM Diabetes Mellitus Prediction Based on Enhanced K Strange Points Clustering and Classification Mobile Sink Data Gathering and Path Determination in Wireless Sensor Networks: A Review A Study on Visual Based Optical Sensor for Depth Sense Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1