Enrique Larios Vargas, J. Hejderup, M. Kechagia, M. Bruntink, Georgios Gousios
{"title":"Enabling Real-Time Feedback in Software Engineering","authors":"Enrique Larios Vargas, J. Hejderup, M. Kechagia, M. Bruntink, Georgios Gousios","doi":"10.1145/3183399.3183416","DOIUrl":null,"url":null,"abstract":"Modern software projects consist of more than just code: teams follow development processes, the code runs on servers or mobile phones and produces run time logs and users talk about the software in forums like StackOverflow and Twitter and rate it on app stores. Insights stemming from the real-time analysis of combined software engineering data can help software practitioners to conduct faster decision-making. With the development of CodeFeedr, a Real-time Software Analytics Platform, we aim to make software analytics a core feedback loop for software engineering projects. CodeFeedr's vision entails: (1) The ability to unify archival and current software analytics data under a single query language, and (2) The feasibility to apply new techniques and methods for high-level aggregation and summarization of near real-time information on software development. In this paper, we outline three use cases where our platform is expected to have a significant impact on the quality and speed of decision making; dependency management, productivity analytics, and run-time error feedback.","PeriodicalId":212579,"journal":{"name":"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 40th International Conference on Software Engineering: New Ideas and Emerging Technologies Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183399.3183416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
Modern software projects consist of more than just code: teams follow development processes, the code runs on servers or mobile phones and produces run time logs and users talk about the software in forums like StackOverflow and Twitter and rate it on app stores. Insights stemming from the real-time analysis of combined software engineering data can help software practitioners to conduct faster decision-making. With the development of CodeFeedr, a Real-time Software Analytics Platform, we aim to make software analytics a core feedback loop for software engineering projects. CodeFeedr's vision entails: (1) The ability to unify archival and current software analytics data under a single query language, and (2) The feasibility to apply new techniques and methods for high-level aggregation and summarization of near real-time information on software development. In this paper, we outline three use cases where our platform is expected to have a significant impact on the quality and speed of decision making; dependency management, productivity analytics, and run-time error feedback.