A Data-Driven Regularization Model for Stereo and Flow

D. Wei, Ce Liu, W. Freeman
{"title":"A Data-Driven Regularization Model for Stereo and Flow","authors":"D. Wei, Ce Liu, W. Freeman","doi":"10.1109/3DV.2014.97","DOIUrl":null,"url":null,"abstract":"Data-driven techniques can reliably build semantic correspondence among images. In this paper, we present a new regularization model for stereo or flow through transferring the shape information of the disparity or flow from semantically matched patches in the training database. Compared to previous regularization models based on image appearance alone, we can better resolve local ambiguity of the disparity or flow by considering the semantic information without explicit object modeling. We incorporate this data-driven regularization model into a standard Markov Random Field (MRF) model, inferred with a gradient descent algorithm and learned with a discriminative learning approach. Compared to prior state-of-the-art methods, our full model achieves comparable or better results on the KITTI stereo and flow datasets, and improves results on the Sintel Flow dataset under an online estimation setting.","PeriodicalId":275516,"journal":{"name":"2014 2nd International Conference on 3D Vision","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd International Conference on 3D Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2014.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Data-driven techniques can reliably build semantic correspondence among images. In this paper, we present a new regularization model for stereo or flow through transferring the shape information of the disparity or flow from semantically matched patches in the training database. Compared to previous regularization models based on image appearance alone, we can better resolve local ambiguity of the disparity or flow by considering the semantic information without explicit object modeling. We incorporate this data-driven regularization model into a standard Markov Random Field (MRF) model, inferred with a gradient descent algorithm and learned with a discriminative learning approach. Compared to prior state-of-the-art methods, our full model achieves comparable or better results on the KITTI stereo and flow datasets, and improves results on the Sintel Flow dataset under an online estimation setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
立体与流的数据驱动正则化模型
数据驱动技术可以可靠地建立图像之间的语义对应关系。本文提出了一种新的立体或流的正则化模型,该模型通过对训练数据库中语义匹配块的视差或流的形状信息进行转换。与以往单纯基于图像外观的正则化模型相比,我们在没有明确对象建模的情况下,通过考虑语义信息,可以更好地解决视差或流的局部模糊问题。我们将这个数据驱动的正则化模型合并到一个标准的马尔可夫随机场(MRF)模型中,使用梯度下降算法进行推断,并使用判别学习方法进行学习。与之前最先进的方法相比,我们的完整模型在KITTI立体和流动数据集上取得了相当或更好的结果,并在在线估计设置下改善了sinintel流动数据集的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Querying 3D Mesh Sequences for Human Action Retrieval Temporal Octrees for Compressing Dynamic Point Cloud Streams High-Quality Depth Recovery via Interactive Multi-view Stereo Iterative Closest Spectral Kernel Maps Close-Range Photometric Stereo with Point Light Sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1