{"title":"MORP: makespan optimization for processors with an embedded reconfigurable fabric","authors":"Artjom Grudnitsky, L. Bauer, J. Henkel","doi":"10.1145/2554688.2554782","DOIUrl":null,"url":null,"abstract":"Processors with an embedded runtime reconfigurable fabric have been explored in academia and industry started production of commercial platforms (e.g. Xilinx Zynq-7000). While providing significant performance and efficiency, the comparatively long reconfiguration time limits these advantages when applications request reconfigurations frequently. In multi-tasking systems frequent task switches lead to frequent reconfigurations and thus are a major hurdle for further performance increases. Sophisticated task scheduling is a very effective means to reduce the negative impact of these reconfiguration requests. In this paper, we propose an online approach for combined task scheduling and re-distribution of reconfigurable fabric between tasks in order to reduce the makespan, i.e. the completion time of a taskset that executes on a runtime reconfigurable processor. Evaluating multiple tasksets comprised of multimedia applications, our proposed approach achieves makespans that are on average only 2.8% worse than those achieved by a theoretical optimal scheduling that assumes zero-overhead reconfiguration time. In comparison, scheduling approaches deployed in state-of-the-art reconfigurable processors achieve makespans 14%-20% worse than optimal. As our approach is a purely software-side mechanism, a multitude of reconfigurable platforms aimed at multi-tasking can benefit from it.","PeriodicalId":390562,"journal":{"name":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2554688.2554782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Processors with an embedded runtime reconfigurable fabric have been explored in academia and industry started production of commercial platforms (e.g. Xilinx Zynq-7000). While providing significant performance and efficiency, the comparatively long reconfiguration time limits these advantages when applications request reconfigurations frequently. In multi-tasking systems frequent task switches lead to frequent reconfigurations and thus are a major hurdle for further performance increases. Sophisticated task scheduling is a very effective means to reduce the negative impact of these reconfiguration requests. In this paper, we propose an online approach for combined task scheduling and re-distribution of reconfigurable fabric between tasks in order to reduce the makespan, i.e. the completion time of a taskset that executes on a runtime reconfigurable processor. Evaluating multiple tasksets comprised of multimedia applications, our proposed approach achieves makespans that are on average only 2.8% worse than those achieved by a theoretical optimal scheduling that assumes zero-overhead reconfiguration time. In comparison, scheduling approaches deployed in state-of-the-art reconfigurable processors achieve makespans 14%-20% worse than optimal. As our approach is a purely software-side mechanism, a multitude of reconfigurable platforms aimed at multi-tasking can benefit from it.