Self-trapping in an attractor neural network with nearest neighbor synapses mimics full connectivity

R. Pavloski, M. Karimi
{"title":"Self-trapping in an attractor neural network with nearest neighbor synapses mimics full connectivity","authors":"R. Pavloski, M. Karimi","doi":"10.1109/IJCNN.1999.831586","DOIUrl":null,"url":null,"abstract":"A means of providing the feedback necessary for an associative memory is suggested by self-trapping, the development of localization phenomena and order in coupled physical systems. Following the lead of Hopfield (1982, 1984) who exploited the formal analogy of a fully-connected ANN to an infinite ranged interaction Ising model, we have carried through a similar development to demonstrate that self-trapping networks (STNs) with only near-neighbor synapses develop attractor states through localization of a self-trapping input. The attractor states of the STN are the stored memories of this system, and are analogous to the magnetization developed in a self-trapping 1D Ising system. Post-synaptic potentials for each stored memory become trapped at non-zero valves and a sparsely-connected network evolves to the corresponding state. Both analytic and computational studies of the STN show that this model mimics a fully-connected ANN.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.831586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A means of providing the feedback necessary for an associative memory is suggested by self-trapping, the development of localization phenomena and order in coupled physical systems. Following the lead of Hopfield (1982, 1984) who exploited the formal analogy of a fully-connected ANN to an infinite ranged interaction Ising model, we have carried through a similar development to demonstrate that self-trapping networks (STNs) with only near-neighbor synapses develop attractor states through localization of a self-trapping input. The attractor states of the STN are the stored memories of this system, and are analogous to the magnetization developed in a self-trapping 1D Ising system. Post-synaptic potentials for each stored memory become trapped at non-zero valves and a sparsely-connected network evolves to the corresponding state. Both analytic and computational studies of the STN show that this model mimics a fully-connected ANN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有最近邻突触的吸引子神经网络中的自捕获模拟了完全连接
提出了一种提供联想记忆所必需的反馈的方法,即自捕获,耦合物理系统中定位现象和顺序的发展。Hopfield(1982, 1984)利用了全连接人工神经网络与无限范围相互作用的Ising模型的形式化类比,在此基础上,我们进行了类似的发展,证明只有近邻突触的自捕获网络(stn)通过定位自捕获输入来发展吸引子状态。STN的吸引子状态是该系统的存储记忆,并且类似于自捕获1D Ising系统中开发的磁化。每个存储记忆的突触后电位被困在非零阀,一个稀疏连接的网络进化到相应的状态。对STN的分析和计算研究表明,该模型模拟了一个全连接的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1