A versatile framework for labelling imagery with a large number of classes

Shailesh Kumar, M. Crawford, Joydeep Ghosh
{"title":"A versatile framework for labelling imagery with a large number of classes","authors":"Shailesh Kumar, M. Crawford, Joydeep Ghosh","doi":"10.1109/IJCNN.1999.833531","DOIUrl":null,"url":null,"abstract":"Conventional methods for feature selection use some kind of separability criteria or classification accuracy for computing the relevance of a feature subset to the classification task. In two-class problems, this approach may be suitable, but for problems such as character recognition with 26 classes, these feature selection algorithms are often faced with complex tradeoffs among efficacy of features for separating different subsets of classes. We propose a class-pair based feature selection algorithm which, in conjunction with mixture modeling technique, provides significantly superior results for differentiating a large number of classes, even when the class priors vary considerably. This technique is applied to multisensor NASA/JPL remote sensing AIRSAR data for characterizing 11 types of land cover. The proposed polychotomous approach not only gives improved test accuracy, but also reduces the number of features used. Important domain information can be derived from the features selected for different class pairs and the distance measure between these class pairs.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Conventional methods for feature selection use some kind of separability criteria or classification accuracy for computing the relevance of a feature subset to the classification task. In two-class problems, this approach may be suitable, but for problems such as character recognition with 26 classes, these feature selection algorithms are often faced with complex tradeoffs among efficacy of features for separating different subsets of classes. We propose a class-pair based feature selection algorithm which, in conjunction with mixture modeling technique, provides significantly superior results for differentiating a large number of classes, even when the class priors vary considerably. This technique is applied to multisensor NASA/JPL remote sensing AIRSAR data for characterizing 11 types of land cover. The proposed polychotomous approach not only gives improved test accuracy, but also reduces the number of features used. Important domain information can be derived from the features selected for different class pairs and the distance measure between these class pairs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个通用的框架,用于标记具有大量类别的图像
传统的特征选择方法使用某种可分离性标准或分类精度来计算特征子集与分类任务的相关性。在两类问题中,这种方法可能是合适的,但对于26个类的字符识别问题,这些特征选择算法往往面临着特征在分离不同类子集的有效性之间的复杂权衡。我们提出了一种基于类对的特征选择算法,该算法与混合建模技术相结合,即使在类先验值差异很大的情况下,也可以为区分大量的类提供明显更好的结果。该技术应用于NASA/JPL多传感器遥感AIRSAR数据,用于表征11种类型的土地覆盖。提出的多分方法不仅提高了测试精度,而且减少了使用的特征数量。通过选择不同类对的特征和类对之间的距离度量,可以得到重要的领域信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1