GFRBS-PHM: A Genetic Fuzzy Rule-Based System for PHM with improved interpretability

Rogério Ishibashi, Cairo Lúcio Nascimento Júnior
{"title":"GFRBS-PHM: A Genetic Fuzzy Rule-Based System for PHM with improved interpretability","authors":"Rogério Ishibashi, Cairo Lúcio Nascimento Júnior","doi":"10.1109/ICPHM.2013.6621419","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to predict the Remaining Useful Life (RUL) of a generic system when a higher level of interpretability of the prediction model is desired. A set of well known computational intelligence techniques such as Decision Trees, Fuzzy Logic, and Genetic Algorithms is used to generate a hybrid model which is called Genetic Fuzzy Rule-Based System (GFRBS) supported by a Decision Tree. The proposed method automatically generates fuzzy rules and tunes the associated membership functions. Accuracy and improved interpretability are achieved during training since they are coded in the fitness function used by the genetic algorithm. The proposed approach is applied to a case study of degradation of aeronautical engines. The task is to estimate the remaining useful life of a commercial aircraft engine using only historical data gathered by the sensors embedded in the engine.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This paper presents an approach to predict the Remaining Useful Life (RUL) of a generic system when a higher level of interpretability of the prediction model is desired. A set of well known computational intelligence techniques such as Decision Trees, Fuzzy Logic, and Genetic Algorithms is used to generate a hybrid model which is called Genetic Fuzzy Rule-Based System (GFRBS) supported by a Decision Tree. The proposed method automatically generates fuzzy rules and tunes the associated membership functions. Accuracy and improved interpretability are achieved during training since they are coded in the fitness function used by the genetic algorithm. The proposed approach is applied to a case study of degradation of aeronautical engines. The task is to estimate the remaining useful life of a commercial aircraft engine using only historical data gathered by the sensors embedded in the engine.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传模糊规则的PHM可解释性改进系统
本文提出了一种预测通用系统剩余使用寿命(RUL)的方法,该方法对预测模型的可解释性要求较高。利用决策树、模糊逻辑和遗传算法等计算智能技术生成决策树支持的遗传模糊规则系统(GFRBS)。该方法自动生成模糊规则,并对关联隶属函数进行调整。由于在遗传算法使用的适应度函数中编码,因此在训练过程中实现了准确性和改进的可解释性。将该方法应用于航空发动机退化问题的实例研究。任务是仅使用嵌入在发动机中的传感器收集的历史数据来估计商用飞机发动机的剩余使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A decentralized fault accommodation scheme for nonlinear interconnected systems A circuit-centric approach to electronic system-level diagnostics and prognostics Predictive maintenance policy optimization by discrimination of marginally distinct signals Data mining based fault isolation with FMEA rank: A case study of APU fault identification Complete parametric estimation of the Weibull model with an optimized inspection interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1