{"title":"Improved spiral sense reconstruction using a multiscale wavelet model","authors":"Bo Liu, E. Abdelsalam, J. Sheng, L. Ying","doi":"10.1109/ISBI.2008.4541294","DOIUrl":null,"url":null,"abstract":"SENSE has been widely accepted and extensively studied in the community of parallel MRI. Although many regularization approaches have been developed to address the ill-conditioning problem for Cartesian SENSE, fewer efforts have been made to address this problem when the sampling trajectory is non-Cartesian. For non-Cartesian SENSE using the iterative conjugate gradient method, ill- conditioning can degrade not only the signal-to-noise ratio, but also the convergence behavior. This paper proposes a regularization technique for non-Cartesian SENSE using a multiscale wavelet model. The technique models the desired image as a random field whose wavelet transform coefficients obey a generalized Gaussian distribution. The effectiveness of the proposed method has been validated by in vivo experiments.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
SENSE has been widely accepted and extensively studied in the community of parallel MRI. Although many regularization approaches have been developed to address the ill-conditioning problem for Cartesian SENSE, fewer efforts have been made to address this problem when the sampling trajectory is non-Cartesian. For non-Cartesian SENSE using the iterative conjugate gradient method, ill- conditioning can degrade not only the signal-to-noise ratio, but also the convergence behavior. This paper proposes a regularization technique for non-Cartesian SENSE using a multiscale wavelet model. The technique models the desired image as a random field whose wavelet transform coefficients obey a generalized Gaussian distribution. The effectiveness of the proposed method has been validated by in vivo experiments.