Semi-Supervised Learning Techniques for Automated Fault Detection and Diagnosis of HVAC Systems

M. Dey, S. P. Rana, S. Dudley
{"title":"Semi-Supervised Learning Techniques for Automated Fault Detection and Diagnosis of HVAC Systems","authors":"M. Dey, S. P. Rana, S. Dudley","doi":"10.1109/ICTAI.2018.00136","DOIUrl":null,"url":null,"abstract":"This work demonstrates and evaluates semisupervised learning (SSL) techniques for heating, ventilation and air-conditioning (HVAC) data from a real building to automatically discover and identify faults. Real HVAC sensor data is unfortunately usually unstructured and unlabelled, thus, to ensure better performance of automated methods promoting machine-learning techniques requires raw data to be preprocessed, increasing the overall operational costs of the system employed and makes real time application difficult. Due to the data complexity and limited availability of labelled information, semi-supervised learning based robust automatic fault detection and diagnosis (AFDD) tool has been proposed here. Further, this method has been tested and compared for more than 50 thousand TUs. Established statistical performance metrics and paired t-test have been applied to validate the proposed work.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This work demonstrates and evaluates semisupervised learning (SSL) techniques for heating, ventilation and air-conditioning (HVAC) data from a real building to automatically discover and identify faults. Real HVAC sensor data is unfortunately usually unstructured and unlabelled, thus, to ensure better performance of automated methods promoting machine-learning techniques requires raw data to be preprocessed, increasing the overall operational costs of the system employed and makes real time application difficult. Due to the data complexity and limited availability of labelled information, semi-supervised learning based robust automatic fault detection and diagnosis (AFDD) tool has been proposed here. Further, this method has been tested and compared for more than 50 thousand TUs. Established statistical performance metrics and paired t-test have been applied to validate the proposed work.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
暖通空调系统故障自动检测与诊断的半监督学习技术
本研究展示并评估了半监督学习(SSL)技术用于供暖、通风和空调(HVAC)数据的自动发现和识别故障。不幸的是,真实的HVAC传感器数据通常是非结构化和未标记的,因此,为了确保自动化方法的更好性能,推广机器学习技术需要对原始数据进行预处理,这增加了所采用系统的总体运营成本,并使实时应用变得困难。由于数据的复杂性和标记信息的可用性有限,本文提出了基于半监督学习的鲁棒自动故障检测与诊断(AFDD)工具。此外,该方法已在超过5万TUs的范围内进行了测试和比较。已建立的统计性能指标和配对t检验已被应用来验证所提出的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Title page i] Enhanced Unsatisfiable Cores for QBF: Weakening Universal to Existential Quantifiers Effective Ant Colony Optimization Solution for the Brazilian Family Health Team Scheduling Problem Exploiting Global Semantic Similarity Biterms for Short-Text Topic Discovery Assigning and Scheduling Service Visits in a Mixed Urban/Rural Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1