STAFNet: Swin Transformer Based Anchor-Free Network for Detection of Forward-looking Sonar Imagery

Xingyu Zhu, Yingshuo Liang, Jianlei Zhang, Zengqiang Chen
{"title":"STAFNet: Swin Transformer Based Anchor-Free Network for Detection of Forward-looking Sonar Imagery","authors":"Xingyu Zhu, Yingshuo Liang, Jianlei Zhang, Zengqiang Chen","doi":"10.1145/3512527.3531398","DOIUrl":null,"url":null,"abstract":"Forward-looking sonar (FLS) is widely applied in underwater operations, among which the search of underwater crash objects and victims is an incredibly challenging task. An efficient detection method based on deep learning can intelligently detect objects in FLS images, which makes it a reliable tool to replace manual recognition. To achieve this aim, we propose a novel Swin Transformer based anchor-free network (STAFNet), which contains a strong backbone Swin Transformer and a lite head with deformable convolution network (DCN). We employ a ROV equipped with a FLS to acquire dataset including victim, boat and plane model objects. A series of experiments are carried out on this dataset to train and verify the performance of STAFNet. Compared with other state-of-the-art methods, STAFNet significantly overcomes complex noise interference, and achieves the best balance between detection accuracy and inference speed.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Forward-looking sonar (FLS) is widely applied in underwater operations, among which the search of underwater crash objects and victims is an incredibly challenging task. An efficient detection method based on deep learning can intelligently detect objects in FLS images, which makes it a reliable tool to replace manual recognition. To achieve this aim, we propose a novel Swin Transformer based anchor-free network (STAFNet), which contains a strong backbone Swin Transformer and a lite head with deformable convolution network (DCN). We employ a ROV equipped with a FLS to acquire dataset including victim, boat and plane model objects. A series of experiments are carried out on this dataset to train and verify the performance of STAFNet. Compared with other state-of-the-art methods, STAFNet significantly overcomes complex noise interference, and achieves the best balance between detection accuracy and inference speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Swin变压器的无锚网络检测前视声纳图像
前视声呐(FLS)在水下作业中有着广泛的应用,其中水下坠毁物体和遇难者的搜索是一项极具挑战性的任务。一种基于深度学习的高效检测方法可以智能地检测出FLS图像中的物体,是替代人工识别的可靠工具。为了实现这一目标,我们提出了一种新的基于Swin Transformer的无锚网络(STAFNet),该网络包含一个强大的骨干Swin Transformer和一个具有可变形卷积网络(DCN)的life head。我们使用配备FLS的ROV来获取包括受害者,船只和飞机模型对象的数据集。在此数据集上进行了一系列实验,以训练和验证STAFNet的性能。与其他先进的方法相比,STAFNet显著克服了复杂的噪声干扰,在检测精度和推理速度之间达到了最佳平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1