{"title":"Second-order decentralized safe consensus of inter-connected heterogeneous vehicular platoons","authors":"H. Chehardoli, M. Homaeinezhad","doi":"10.1109/ICCIAUTOM.2017.8258695","DOIUrl":null,"url":null,"abstract":"This paper deals with second-order consensus of inter-connected heterogeneous vehicular platoons by considering collision avoidance and string stability. A second order differential equation is employed to describe the upper level dynamics of each vehicle. Both communication and parasitic delays are investigated in stability analysis. The communication topology of all traffic flow is assumed to be unidirectional. Constant time headway policy (CTHP) is used to adjust the interplatoon and intra-platoon spacing. By using the feedback information of preceding vehicle's acceleration, the closed-loop dynamics of platoon will be decoupled. By introducing new theorems, sufficient conditions on control parameters satisfying both inter / intra-platoon asymptotic stability, collision avoidance and string stability are derived. Simulation results are provided to illustrate the effectiveness of the proposed approaches.","PeriodicalId":197207,"journal":{"name":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Control, Instrumentation, and Automation (ICCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2017.8258695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper deals with second-order consensus of inter-connected heterogeneous vehicular platoons by considering collision avoidance and string stability. A second order differential equation is employed to describe the upper level dynamics of each vehicle. Both communication and parasitic delays are investigated in stability analysis. The communication topology of all traffic flow is assumed to be unidirectional. Constant time headway policy (CTHP) is used to adjust the interplatoon and intra-platoon spacing. By using the feedback information of preceding vehicle's acceleration, the closed-loop dynamics of platoon will be decoupled. By introducing new theorems, sufficient conditions on control parameters satisfying both inter / intra-platoon asymptotic stability, collision avoidance and string stability are derived. Simulation results are provided to illustrate the effectiveness of the proposed approaches.