Dynamic load balancing of massively parallel unstructured meshes

Gerrett Diamond, Cameron W. Smith, M. Shephard
{"title":"Dynamic load balancing of massively parallel unstructured meshes","authors":"Gerrett Diamond, Cameron W. Smith, M. Shephard","doi":"10.1145/3148226.3148236","DOIUrl":null,"url":null,"abstract":"Simulating systems with evolving relational structures on massively parallel computers require the computational work to be evenly distributed across the processing resources throughout the simulation. Adaptive, unstructured, mesh-based finite element and finite volume tools best exemplify this need. We present EnGPar and its diffusive partition improvement method that accounts for multiple application specified criteria. EnGPar's performance is compared against its predecessor, ParMA. Specifically, partition improvement results are provided on up to 512Ki processes of the Argonne Leadership Computing Facility's Mira BlueGene/Q system.","PeriodicalId":440657,"journal":{"name":"Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3148226.3148236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Simulating systems with evolving relational structures on massively parallel computers require the computational work to be evenly distributed across the processing resources throughout the simulation. Adaptive, unstructured, mesh-based finite element and finite volume tools best exemplify this need. We present EnGPar and its diffusive partition improvement method that accounts for multiple application specified criteria. EnGPar's performance is compared against its predecessor, ParMA. Specifically, partition improvement results are provided on up to 512Ki processes of the Argonne Leadership Computing Facility's Mira BlueGene/Q system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模并行非结构化网格的动态负载平衡
在大规模并行计算机上模拟具有演化关系结构的系统,要求计算工作在整个模拟过程中均匀分布在处理资源上。自适应、非结构化、基于网格的有限元和有限体积工具是这种需求的最佳例证。我们提出了EnGPar及其扩散分区改进方法,该方法考虑了多个应用指定的标准。EnGPar的性能与其前身ParMA进行了比较。具体来说,在阿贡领导计算设施的Mira BlueGene/Q系统的高达512Ki的进程上提供分区改进结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigating half precision arithmetic to accelerate dense linear system solvers Dynamic load balancing of massively parallel unstructured meshes Proceedings of the 8th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems Analyzing the criticality of transient faults-induced SDCS on GPU applications Parallel jaccard and related graph clustering techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1