Link-Adaptation for Improved Quality-of-Service in V2V Communication using Reinforcement Learning

Serene Banerjee, Joy Bose, Sleeba Paul Puthepurakel, Pratyush Kiran Uppuluri, Subhadip Bandyopadhyay, Y. S. K. Reddy, Ranjani H. G.
{"title":"Link-Adaptation for Improved Quality-of-Service in V2V Communication using Reinforcement Learning","authors":"Serene Banerjee, Joy Bose, Sleeba Paul Puthepurakel, Pratyush Kiran Uppuluri, Subhadip Bandyopadhyay, Y. S. K. Reddy, Ranjani H. G.","doi":"10.1145/3564121.3564122","DOIUrl":null,"url":null,"abstract":"For autonomous driving, safer travel, and fleet management, Vehicle-to-Vehicle (V2V) communication protocols are an emerging area of research and development. State-of-the-art techniques include machine learning (ML) and reinforcement learning (RL) to adapt modulation and coding rates as the vehicle moves. However, channel state estimations are often incorrect and rapidly changing in a V2V scenario. We propose a combination of input features, including (a) sensor inputs from other parameters in the vehicle, such as speed and global positioning system (GPS), (b) estimation of interference and load for each of the vehicles, and (c) channel state estimation to find the optimal rate that would maximize Quality-of-Service. Our model uses an ensemble of RL-agents to predict trends in the input parameters and to find the inter-dependencies of these input parameters. An RL agent then utilizes these inputs to find the best modulation and coding rate as the vehicle moves. We demonstrate our results through prototype experiments using real data collected from customer networks.","PeriodicalId":166150,"journal":{"name":"Proceedings of the Second International Conference on AI-ML Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on AI-ML Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564121.3564122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For autonomous driving, safer travel, and fleet management, Vehicle-to-Vehicle (V2V) communication protocols are an emerging area of research and development. State-of-the-art techniques include machine learning (ML) and reinforcement learning (RL) to adapt modulation and coding rates as the vehicle moves. However, channel state estimations are often incorrect and rapidly changing in a V2V scenario. We propose a combination of input features, including (a) sensor inputs from other parameters in the vehicle, such as speed and global positioning system (GPS), (b) estimation of interference and load for each of the vehicles, and (c) channel state estimation to find the optimal rate that would maximize Quality-of-Service. Our model uses an ensemble of RL-agents to predict trends in the input parameters and to find the inter-dependencies of these input parameters. An RL agent then utilizes these inputs to find the best modulation and coding rate as the vehicle moves. We demonstrate our results through prototype experiments using real data collected from customer networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用强化学习改进V2V通信服务质量的链路自适应
对于自动驾驶、更安全的旅行和车队管理来说,车对车(V2V)通信协议是一个新兴的研究和开发领域。最先进的技术包括机器学习(ML)和强化学习(RL),以适应车辆移动时的调制和编码速率。然而,在V2V场景中,通道状态估计通常是不正确的,并且变化很快。我们提出了一个输入特征的组合,包括(a)来自车辆其他参数的传感器输入,如速度和全球定位系统(GPS), (b)对每辆车的干扰和负载的估计,以及(c)通道状态估计,以找到最大限度提高服务质量的最佳速率。我们的模型使用强化学习代理的集合来预测输入参数的趋势,并找到这些输入参数的相互依赖关系。然后,RL代理利用这些输入来找到车辆移动时的最佳调制和编码速率。我们通过使用从客户网络中收集的真实数据的原型实验来证明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid Planning System for Smart Charging of Electric Fleets CluSpa: Computation Reduction in CNN Inference by exploiting Clustering and Sparsity Acceleration-aware, Retraining-free Evolutionary Pruning for Automated Fitment of Deep Learning Models on Edge Devices Patch-wise Features for Blur Image Classification Identification of Causal Dependencies in Multivariate Time Series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1