Prediction of Sit-to-Stand Time Using Trunk Angle and Lower Limb EMG for Assistance System

Tsuyoshi Inoue, R. Matsuo
{"title":"Prediction of Sit-to-Stand Time Using Trunk Angle and Lower Limb EMG for Assistance System","authors":"Tsuyoshi Inoue, R. Matsuo","doi":"10.1109/IICAIET49801.2020.9257818","DOIUrl":null,"url":null,"abstract":"Herein, we propose a method to predict the sit-to-stand time of a user movement assist system. The proposed method predicts the sit-to-stand time using changes in the trunk angle and lower limb muscle activity, based on multiple regression analysis. To verify the accuracy of the proposed method and evaluate data regarding various standing speeds, we conducted experiments on nine participants. The evaluation results show that the proposed method reduced the average error by approximately 35.6% when compared to the conventional method.","PeriodicalId":300885,"journal":{"name":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET49801.2020.9257818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we propose a method to predict the sit-to-stand time of a user movement assist system. The proposed method predicts the sit-to-stand time using changes in the trunk angle and lower limb muscle activity, based on multiple regression analysis. To verify the accuracy of the proposed method and evaluate data regarding various standing speeds, we conducted experiments on nine participants. The evaluation results show that the proposed method reduced the average error by approximately 35.6% when compared to the conventional method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用躯干角度和下肢肌电图预测辅助系统的坐立时间
在此,我们提出了一种预测用户运动辅助系统的坐姿到站立时间的方法。该方法基于多元回归分析,利用躯干角度和下肢肌肉活动的变化来预测坐立时间。为了验证所提出方法的准确性,并评估不同站立速度下的数据,我们对9名参与者进行了实验。评价结果表明,与传统方法相比,该方法的平均误差降低了约35.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating the Number of Cameras Required for a Given Classroom for Face-based Smart Attendance System Stock Market Prediction using Ensemble of Deep Neural Networks Timed Cellular Automata for Flight Delay Scheduling Optimization Experimenting Deep Convolutional Visual Feature Learning using Compositional Subspace Representation and Fashion-MNIST An Investigation of the Effect of Different Number of Electrodes on EIT Reconstructed Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1